Suppr超能文献

视网膜神经节细胞中信息的量子编码。

Quantal encoding of information in a retinal ganglion cell.

作者信息

Freed Michael A

机构信息

Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6058, USA.

出版信息

J Neurophysiol. 2005 Aug;94(2):1048-56. doi: 10.1152/jn.01276.2004. Epub 2005 Apr 20.

Abstract

A retinal ganglion cell receives information about a white-noise stimulus as a flickering pattern of glutamate quanta. The ganglion cell reencodes this information as brief bursts of one to six spikes separated by quiescent periods. When the stimulus is repeated, the number of spikes in a burst is highly reproducible (variance < mean) and spike timing is precise to within 10 ms, leading to an estimate that each spike encodes about 2 bits. To understand how the ganglion cell reencodes information, we studied the quantal patterns by repeating a white-noise stimulus and recording excitatory currents from a voltage-clamped, brisk-sustained ganglion cell. Quanta occurred in synchronous bursts of 3 to 65; the resulting postsynaptic currents summed to form excitatory postsynaptic currents (EPSCs). The number of quanta in an EPSC was only moderately reproducible (variance = mean), quantal timing was precise to within 14 ms, and each quantum encoded 0.1-0.4 bit. In conclusion, compared to a spike, a quantum has similar temporal precision, but is less reproducible and encodes less information. Summing multiple quanta into discrete EPSCs improves the reproducibility of the overall quantal pattern and contributes to the reproducibility of the spike train.

摘要

视网膜神经节细胞将白噪声刺激信息接收为谷氨酸量子的闪烁模式。神经节细胞将此信息重新编码为静息期分隔的一到六个尖峰的短暂爆发。当重复刺激时,爆发中的尖峰数量具有高度可重复性(方差<均值),且尖峰时间精确到10毫秒以内,由此估计每个尖峰编码约2比特信息。为了解神经节细胞如何重新编码信息,我们通过重复白噪声刺激并记录电压钳制的快适应持续性神经节细胞的兴奋性电流,研究了量子模式。量子以3到65个的同步爆发形式出现;产生的突触后电流总和形成兴奋性突触后电流(EPSC)。EPSC中的量子数量仅有适度的可重复性(方差 = 均值),量子时间精确到14毫秒以内,且每个量子编码0.1 - 0.4比特信息。总之,与尖峰相比,量子具有相似的时间精度,但可重复性较低且编码的信息较少。将多个量子总和为离散的EPSC可提高整体量子模式的可重复性,并有助于尖峰序列的可重复性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验