Suppr超能文献

传递到不同类型视网膜神经节细胞的兴奋性信号的可靠性和频率响应。

Reliability and frequency response of excitatory signals transmitted to different types of retinal ganglion cell.

机构信息

Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6058, USA.

出版信息

J Neurophysiol. 2010 Mar;103(3):1508-17. doi: 10.1152/jn.00871.2009. Epub 2010 Jan 20.

Abstract

The same visual stimulus evokes a different pattern of neural signals each time the stimulus is presented. Because this unreliability reduces visual performance, it is important to understand how it arises from neural circuitry. We asked whether different types of ganglion cell receive excitatory signals with different reliability and frequency content and, if so, how retinal circuitry contributes to these differences. If transmitter release is governed by Poisson statistics, the SNR of the postsynaptic currents (ratio of signal power to noise power) should grow linearly with quantal rate (qr), a prediction that we confirmed experimentally. Yet ganglion cells of the same type receive quanta at different rates. Thus to obtain a measure of reliability independent of quantal rate, we calculated the ratio SNR/qr, and found this measure to be type-specific. We also found type-specific differences in the frequency content of postsynaptic currents, although types whose dendrites branched at nearby levels of the inner plexiform layer (IPL) had similar frequency content. As a result, there was an orderly distribution of frequency response through the depth of the IPL, with alternating layers of broadband and high-pass signals. Different types of bipolar cell end at different depths of the IPL and provide excitatory synapses to ganglion cell dendrites there. Thus these findings indicate that a bipolar cell synapse conveys signals whose temporal message and reliability (SNR/qr) are determined by neuronal type. The final SNR of postsynaptic currents is set by the dendritic membrane area of a ganglion cell, which sets the numbers of bipolar cell synapses and thus the rate at which it receives quanta [SNR = qr x (SNR/qr)].

摘要

相同的视觉刺激每次呈现时都会引发不同的神经信号模式。由于这种不可靠性降低了视觉性能,因此了解它如何源自神经回路非常重要。我们想知道是否不同类型的神经节细胞接收到的兴奋性信号具有不同的可靠性和频率内容,如果是这样,视网膜回路如何导致这些差异。如果递质释放受泊松统计控制,那么突触后电流的信噪比(信号功率与噪声功率的比值)应该与量子率(qr)呈线性增长,这一预测我们通过实验得到了证实。然而,同一类型的神经节细胞接收到的量子率却不同。因此,为了获得与量子率无关的可靠性度量,我们计算了 SNR/qr 的比值,并发现该度量具有特定类型的特征。我们还发现突触后电流的频率内容存在特定类型的差异,尽管其树突在内部神经节细胞层(IPL)的附近水平分支的神经节细胞具有相似的频率内容。因此,在 IPL 的深度上存在频率响应的有序分布,交替出现宽带和高通信号层。不同类型的双极细胞终止于 IPL 的不同深度,并为那里的神经节细胞树突提供兴奋性突触。因此,这些发现表明,双极细胞突触传递的信号其时间信息和可靠性(SNR/qr)由神经元类型决定。突触后电流的最终 SNR 由神经节细胞的树突膜面积决定,树突膜面积决定了双极细胞突触的数量,从而决定了它接收量子的速度[SNR = qr x (SNR/qr)]。

相似文献

1
Reliability and frequency response of excitatory signals transmitted to different types of retinal ganglion cell.
J Neurophysiol. 2010 Mar;103(3):1508-17. doi: 10.1152/jn.00871.2009. Epub 2010 Jan 20.
2
A Mammalian Retinal Ganglion Cell Implements a Neuronal Computation That Maximizes the SNR of Its Postsynaptic Currents.
J Neurosci. 2017 Feb 8;37(6):1468-1478. doi: 10.1523/JNEUROSCI.2814-16.2016. Epub 2016 Dec 30.
3
Parallel cone bipolar pathways to a ganglion cell use different rates and amplitudes of quantal excitation.
J Neurosci. 2000 Jun 1;20(11):3956-63. doi: 10.1523/JNEUROSCI.20-11-03956.2000.
4
Synaptic noise is an information bottleneck in the inner retina during dynamic visual stimulation.
J Physiol. 2014 Feb 15;592(4):635-51. doi: 10.1113/jphysiol.2013.265744. Epub 2013 Dec 2.
5
Quantal encoding of information in a retinal ganglion cell.
J Neurophysiol. 2005 Aug;94(2):1048-56. doi: 10.1152/jn.01276.2004. Epub 2005 Apr 20.
6
Multiple types of spontaneous excitatory synaptic currents in salamander retinal ganglion cells.
Brain Res. 1999 Mar 13;821(2):487-502. doi: 10.1016/s0006-8993(99)01067-7.
7
Light-evoked excitatory synaptic currents of X-type retinal ganglion cells.
J Neurophysiol. 2000 Jun;83(6):3217-29. doi: 10.1152/jn.2000.83.6.3217.
8
Spike-dependent GABA inputs to bipolar cell axon terminals contribute to lateral inhibition of retinal ganglion cells.
J Neurophysiol. 2003 May;89(5):2449-58. doi: 10.1152/jn.00916.2002. Epub 2002 Nov 13.
10
Rate of quantal excitation to a retinal ganglion cell evoked by sensory input.
J Neurophysiol. 2000 May;83(5):2956-66. doi: 10.1152/jn.2000.83.5.2956.

引用本文的文献

1
Convergence and Divergence of CRH Amacrine Cells in Mouse Retinal Circuitry.
J Neurosci. 2018 Apr 11;38(15):3753-3766. doi: 10.1523/JNEUROSCI.2518-17.2018. Epub 2018 Mar 23.
2
Asymmetry between ON and OFF α ganglion cells of mouse retina: integration of signal and noise from synaptic inputs.
J Physiol. 2017 Nov 15;595(22):6979-6991. doi: 10.1113/JP274736. Epub 2017 Oct 15.
3
Selective synaptic connections in the retinal pathway for night vision.
J Comp Neurol. 2019 Jan 1;527(1):117-132. doi: 10.1002/cne.24313. Epub 2017 Sep 15.
4
A Mammalian Retinal Ganglion Cell Implements a Neuronal Computation That Maximizes the SNR of Its Postsynaptic Currents.
J Neurosci. 2017 Feb 8;37(6):1468-1478. doi: 10.1523/JNEUROSCI.2814-16.2016. Epub 2016 Dec 30.
5
Synaptic noise is an information bottleneck in the inner retina during dynamic visual stimulation.
J Physiol. 2014 Feb 15;592(4):635-51. doi: 10.1113/jphysiol.2013.265744. Epub 2013 Dec 2.
6
Cross inhibition from ON to OFF pathway improves the efficiency of contrast encoding in the mammalian retina.
J Neurophysiol. 2012 Nov;108(10):2679-88. doi: 10.1152/jn.00589.2012. Epub 2012 Aug 29.
7
Astrocytes modulate neural network activity by Ca²+-dependent uptake of extracellular K+.
Sci Signal. 2012 Apr 3;5(218):ra26. doi: 10.1126/scisignal.2002334.
8
Why do axons differ in caliber?
J Neurosci. 2012 Jan 11;32(2):626-38. doi: 10.1523/JNEUROSCI.4254-11.2012.

本文引用的文献

1
Loss of sensitivity in an analog neural circuit.
J Neurosci. 2009 Mar 11;29(10):3045-58. doi: 10.1523/JNEUROSCI.5071-08.2009.
2
Cone contacts, mosaics, and territories of bipolar cells in the mouse retina.
J Neurosci. 2009 Jan 7;29(1):106-17. doi: 10.1523/JNEUROSCI.4442-08.2009.
3
Retinal ganglion cells--spatial organization of the receptive field reduces temporal redundancy.
Eur J Neurosci. 2008 Sep;28(5):914-23. doi: 10.1111/j.1460-9568.2008.06394.x. Epub 2008 Aug 8.
4
Disinhibition combines with excitation to extend the operating range of the OFF visual pathway in daylight.
J Neurosci. 2008 Apr 16;28(16):4136-50. doi: 10.1523/JNEUROSCI.4274-07.2008.
5
Different types of ganglion cell share a synaptic pattern.
J Comp Neurol. 2008 Apr 20;507(6):1871-8. doi: 10.1002/cne.21644.
6
Signals and noise in an inhibitory interneuron diverge to control activity in nearby retinal ganglion cells.
Nat Neurosci. 2008 Mar;11(3):318-26. doi: 10.1038/nn2045. Epub 2008 Jan 27.
7
Local edge detectors: a substrate for fine spatial vision at low temporal frequencies in rabbit retina.
J Neurosci. 2006 Dec 20;26(51):13250-63. doi: 10.1523/JNEUROSCI.1991-06.2006.
8
Chromatic properties of horizontal and ganglion cell responses follow a dual gradient in cone opsin expression.
J Neurosci. 2006 Nov 22;26(47):12351-61. doi: 10.1523/JNEUROSCI.1071-06.2006.
9
Network variability limits stimulus-evoked spike timing precision in retinal ganglion cells.
Neuron. 2006 Nov 9;52(3):511-24. doi: 10.1016/j.neuron.2006.09.014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验