Suppr超能文献

金属氧化物中的电荷传输:赤铁矿α-Fe₂O₃的理论研究

Charge transport in metal oxides: a theoretical study of hematite alpha-Fe2O3.

作者信息

Iordanova N, Dupuis M, Rosso K M

机构信息

Chemical Sciences Division, Pacific Northwest National Laboratory Richland, Washington 99352, USA.

出版信息

J Chem Phys. 2005 Apr 8;122(14):144305. doi: 10.1063/1.1869492.

Abstract

Transport of conduction electrons and holes through the lattice of alpha-Fe(2)O(3) (hematite) is modeled as a valence alternation of iron cations using ab initio electronic structure calculations and electron transfer theory. Experimental studies have shown that the conductivity along the (001) basal plane is four orders of magnitude larger than the conductivity along the [001] direction. In the context of the small polaron model, a cluster approach was used to compute quantities controlling the mobility of localized electrons and holes, i.e., the reorganization energy and the electronic coupling matrix element that enter Marcus' theory. The calculation of the electronic coupling followed the generalized Mulliken-Hush approach using the complete active space self-consistent field method. Our findings demonstrate an approximately three orders of magnitude anisotropy in both electron and hole mobility between directions perpendicular and parallel to the c axis, in good accord with experimental data. The anisotropy arises from the slowness of both electron and hole mobilities across basal oxygen planes relative to that within iron bilayers between basal oxygen planes. Interestingly, for elementary reaction steps along either of the directions considered, there is only less than one order of magnitude difference in mobility between electrons and holes, in contrast to accepted classical arguments. Our findings indicate that the most important quantity underlying mobility differences is the electronic coupling, albeit the reorganization energy contributes as well. The large values computed for the electronic coupling suggest that charge transport reactions in hematite are adiabatic in nature. The electronic coupling is found to depend on both the superexchange interaction through the bridging oxygen atoms and the d-shell electron spin coupling within the Fe-Fe donor-acceptor pair, while the reorganization energy is essentially independent of the electron spin coupling.

摘要

利用从头算电子结构计算和电子转移理论,将传导电子和空穴在α - Fe₂O₃(赤铁矿)晶格中的传输模拟为铁阳离子的价态交替。实验研究表明,沿(001)基面的电导率比沿[001]方向的电导率大四个数量级。在小极化子模型的背景下,采用簇方法计算控制局域电子和空穴迁移率的量,即进入马库斯理论的重组能和电子耦合矩阵元。电子耦合的计算采用广义穆利肯 - 赫什方法,使用完全活性空间自洽场方法。我们的研究结果表明,在垂直和平行于c轴的方向之间,电子和空穴迁移率存在约三个数量级的各向异性,与实验数据吻合良好。这种各向异性源于电子和空穴在基面氧平面间的迁移率相对于基面氧平面间铁双层内的迁移率较慢。有趣的是,对于所考虑的任一方向上的基本反应步骤,电子和空穴的迁移率差异仅小于一个数量级,这与公认的经典观点不同。我们的研究结果表明,迁移率差异背后最重要的量是电子耦合,尽管重组能也有贡献。计算得到的电子耦合的大值表明赤铁矿中的电荷传输反应本质上是绝热的。发现电子耦合既取决于通过桥连氧原子的超交换相互作用,也取决于Fe - Fe供体 - 受体对中的d壳层电子自旋耦合,而重组能基本上与电子自旋耦合无关。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验