Suppr超能文献

无机铁 - 氧和铁 - 硫氧化还原酶:前生物化学及生物中酶活性进化的范例

Inorganic Fe-O and Fe-S oxidoreductases: paradigms for prebiotic chemistry and the evolution of enzymatic activity in biology.

作者信息

Huang Xiao-Lan, Harmer Jeffrey R, Schenk Gerhard, Southam Gordon

机构信息

NYS Center for Clean Water Technology, School of Marine and Atmospheric Sciences, Stony Brook, NY, United States.

Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia.

出版信息

Front Chem. 2024 Feb 8;12:1349020. doi: 10.3389/fchem.2024.1349020. eCollection 2024.

Abstract

Oxidoreductases play crucial roles in electron transfer during biological redox reactions. These reactions are not exclusive to protein-based biocatalysts; nano-size (<100 nm), fine-grained inorganic colloids, such as iron oxides and sulfides, also participate. These nanocolloids exhibit intrinsic redox activity and possess direct electron transfer capacities comparable to their biological counterparts. The unique metal ion architecture of these nanocolloids, including electron configurations, coordination environment, electron conductivity, and the ability to promote spontaneous electron hopping, contributes to their transfer capabilities. Nano-size inorganic colloids are believed to be among the earliest 'oxidoreductases' to have 'evolved' on early Earth, playing critical roles in biological systems. Representing a distinct type of biocatalysts alongside metalloproteins, these nanoparticles offer an early alternative to protein-based oxidoreductase activity. While the roles of inorganic nano-sized catalysts in current Earth ecosystems are intuitively significant, they remain poorly understood and underestimated. Their contribution to chemical reactions and biogeochemical cycles likely helped shape and maintain the balance of our planet's ecosystems. However, their potential applications in biomedical, agricultural, and environmental protection sectors have not been fully explored or exploited. This review examines the structure, properties, and mechanisms of such catalysts from a material's evolutionary standpoint, aiming to raise awareness of their potential to provide innovative solutions to some of Earth's sustainability challenges.

摘要

氧化还原酶在生物氧化还原反应中的电子传递过程中起着至关重要的作用。这些反应并非基于蛋白质的生物催化剂所独有;纳米尺寸(<100纳米)的细颗粒无机胶体,如氧化铁和硫化物,也参与其中。这些纳米胶体表现出固有的氧化还原活性,并具有与生物对应物相当的直接电子转移能力。这些纳米胶体独特的金属离子结构,包括电子构型、配位环境、电子导电性以及促进自发电子跳跃的能力,有助于它们的转移能力。纳米尺寸的无机胶体被认为是早期地球上最早“进化”出来的“氧化还原酶”之一,在生物系统中发挥着关键作用。作为与金属蛋白不同类型的生物催化剂,这些纳米颗粒为基于蛋白质的氧化还原酶活性提供了早期替代方案。虽然无机纳米尺寸催化剂在当前地球生态系统中的作用直观上很重要,但人们对它们的了解仍然很少且被低估。它们对化学反应和生物地球化学循环的贡献可能有助于塑造和维持我们星球生态系统的平衡。然而,它们在生物医学、农业和环境保护领域的潜在应用尚未得到充分探索或利用。本综述从材料进化的角度研究了此类催化剂的结构、性质和机制,旨在提高人们对它们为地球可持续发展挑战提供创新解决方案潜力的认识。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e1/10881703/2bcfae49b998/fchem-12-1349020-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验