Suppr超能文献

功能磁共振成像(fMRI)“脑阅读”:检测和分类人类视觉皮层中fMRI活动的分布式模式。

Functional magnetic resonance imaging (fMRI) "brain reading": detecting and classifying distributed patterns of fMRI activity in human visual cortex.

作者信息

Cox David D, Savoy Robert L

机构信息

Rowland Institute for Science, Cambridge, MA 02142, USA.

出版信息

Neuroimage. 2003 Jun;19(2 Pt 1):261-70. doi: 10.1016/s1053-8119(03)00049-1.

Abstract

Traditional (univariate) analysis of functional MRI (fMRI) data relies exclusively on the information contained in the time course of individual voxels. Multivariate analyses can take advantage of the information contained in activity patterns across space, from multiple voxels. Such analyses have the potential to greatly expand the amount of information extracted from fMRI data sets. In the present study, multivariate statistical pattern recognition methods, including linear discriminant analysis and support vector machines, were used to classify patterns of fMRI activation evoked by the visual presentation of various categories of objects. Classifiers were trained using data from voxels in predefined regions of interest during a subset of trials for each subject individually. Classification of subsequently collected fMRI data was attempted according to the similarity of activation patterns to prior training examples. Classification was done using only small amounts of data (20 s worth) at a time, so such a technique could, in principle, be used to extract information about a subject's percept on a near real-time basis. Classifiers trained on data acquired during one session were equally accurate in classifying data collected within the same session and across sessions separated by more than a week, in the same subject. Although the highest classification accuracies were obtained using patterns of activity including lower visual areas as input, classification accuracies well above chance were achieved using regions of interest restricted to higher-order object-selective visual areas. In contrast to typical fMRI data analysis, in which hours of data across many subjects are averaged to reveal slight differences in activation, the use of pattern recognition methods allows a subtle 10-way discrimination to be performed on an essentially trial-by-trial basis within individuals, demonstrating that fMRI data contain far more information than is typically appreciated.

摘要

传统的(单变量)功能磁共振成像(fMRI)数据分析仅依赖于各个体素时间序列中包含的信息。多变量分析可以利用多个体素在空间上的活动模式中包含的信息。此类分析有潜力极大地扩展从fMRI数据集中提取的信息量。在本研究中,多变量统计模式识别方法,包括线性判别分析和支持向量机,被用于对各类物体视觉呈现所诱发的fMRI激活模式进行分类。在每个受试者每次试验的一个子集中,使用来自预定义感兴趣区域内体素的数据对分类器进行单独训练。根据激活模式与先前训练示例的相似性,尝试对随后收集的fMRI数据进行分类。每次仅使用少量数据(相当于20秒)进行分类,因此从原则上讲,这种技术可用于近乎实时地提取有关受试者感知的信息。在同一受试者中,根据在一个会话期间获取的数据训练的分类器,对在同一会话内以及相隔一周以上的不同会话中收集的数据进行分类时,准确率相同。尽管使用包括较低视觉区域在内的活动模式作为输入可获得最高的分类准确率,但使用仅限于高阶物体选择性视觉区域的感兴趣区域也能实现远高于随机水平的分类准确率。与典型的fMRI数据分析不同,在典型分析中,要对许多受试者数小时的数据进行平均以揭示激活的细微差异,而使用模式识别方法能够在个体内部基本上逐次试验地进行细微的十类别区分,这表明fMRI数据包含的信息远比通常认为的要多。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验