Suppr超能文献

物体分类表征中的活动模式。

Patterns of activity in the categorical representations of objects.

作者信息

Carlson Thomas A, Schrater Paul, He Sheng

机构信息

University of Minnesota, Minneapolis, MN 55544, USA.

出版信息

J Cogn Neurosci. 2003 Jul 1;15(5):704-17. doi: 10.1162/089892903322307429.

Abstract

Object perception has been a subject of extensive fMRI studies in recent years. Yet the nature of the cortical representation of objects in the human brain remains controversial. Analyses of fMRI data have traditionally focused on the activation of individual voxels associated with presentation of various stimuli. The current analysis approaches functional imaging data as collective information about the stimulus. Linking activity in the brain to a stimulus is treated as a pattern-classification problem. Linear discriminant analysis was used to reanalyze a set of data originally published by Ishai et al. (2000), available from the fMRIDC (accession no. 2-2000-1113D). Results of the new analysis reveal that patterns of activity that distinguish one category of objects from other categories are largely independent of one another, both in terms of the activity and spatial overlap. The information used to detect objects from phase-scrambled control stimuli is not essential in distinguishing one object category from another. Furthermore, performing an object-matching task during the scan significantly improved the ability to predict objects from controls, but had minimal effect on object classification, suggesting that the task-based attentional benefit was non-specific to object categories.

摘要

近年来,物体感知一直是功能磁共振成像(fMRI)广泛研究的主题。然而,人类大脑中物体的皮质表征的本质仍存在争议。传统上,fMRI数据分析主要集中在与各种刺激呈现相关的单个体素的激活上。当前的分析方法将功能成像数据视为关于刺激的集体信息。将大脑中的活动与刺激联系起来被视为一个模式分类问题。线性判别分析被用于重新分析一组最初由Ishai等人(2000年)发表的数据,这些数据可从fMRIDC获得( accession no. 2-2000-1113D)。新分析的结果表明,区分一类物体与其他类别的活动模式在很大程度上彼此独立,无论是在活动还是空间重叠方面。用于从相位打乱的对照刺激中检测物体的信息在区分一个物体类别与另一个物体类别时并非必不可少。此外,在扫描过程中执行物体匹配任务显著提高了从对照中预测物体的能力,但对物体分类的影响最小,这表明基于任务的注意力益处对物体类别不具有特异性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验