Suppr超能文献

结合自组织映射和径向基函数的胸部非刚性配准

Thoracic non-rigid registration combining self-organizing maps and radial basis functions.

作者信息

Matsopoulos George K, Mouravliansky Nikolaos A, Asvestas Pantelis A, Delibasis Konstantinos K, Kouloulias Vassilis

机构信息

Institute of Communications and Computer Systems, National Technical University of Athens, 9, Iroon Polytechniou Street, Zografos, Athens 157 80, Greece.

出版信息

Med Image Anal. 2005 Jun;9(3):237-54. doi: 10.1016/j.media.2004.09.002. Epub 2004 Dec 30.

Abstract

An automatic three-dimensional non-rigid registration scheme is proposed in this paper and applied to thoracic computed tomography (CT) data of patients with stage III non-small cell lung cancer (NSCLC). According to the registration scheme, initially anatomical set of points such as the vertebral spine, the ribs, and shoulder blades are automatically segmented slice by slice from the two CT scans of the same patient in order to serve as interpolant points. Based on these extracted features, a rigid-body transformation is then applied to provide a pre-registration of the data. To establish correspondence between the feature points, the novel application of the self-organizing maps (SOMs) is adopted. In particular, the automatic correspondence of the interpolant points is based on the initialization of the Kohonen neural network model capable to identify 500 corresponding pairs of points approximately in the two CT sets. Then, radial basis functions (RBFs) using the shifted log function is subsequently employed for elastic warping of the image volume, using the correspondence between the interpolant points, as obtained in the previous phase. Quantitative and qualitative results are also presented to validate the performance of the proposed elastic registration scheme resulting in an alignment error of 6 mm, on average, over 15 CT paired datasets. Finally, changes of the tumor volume in respect to each reference dataset are estimated for all patients, which indicate inspiration and/or movement of the patient during acquisition of the data. Thus, the practical implementation of this scheme could provide estimations of lung tumor volumes during radiotherapy treatment planning.

摘要

本文提出了一种自动三维非刚性配准方案,并将其应用于III期非小细胞肺癌(NSCLC)患者的胸部计算机断层扫描(CT)数据。根据该配准方案,首先逐片自动分割同一患者的两次CT扫描中的解剖学点集,如脊柱、肋骨和肩胛骨,作为插值点。基于这些提取的特征,然后应用刚体变换对数据进行预配准。为了在特征点之间建立对应关系,采用了自组织映射(SOM)的新应用。特别是,插值点的自动对应基于能够在两个CT集中大致识别500对对应点的Kohonen神经网络模型的初始化。然后,利用前一阶段获得的插值点之间的对应关系,随后采用使用移位对数函数的径向基函数(RBF)对图像体积进行弹性变形。还给出了定量和定性结果,以验证所提出的弹性配准方案的性能,在15个CT配对数据集上平均对准误差为6mm。最后,估计所有患者相对于每个参考数据集的肿瘤体积变化,这表明在数据采集期间患者的吸气和/或移动。因此,该方案的实际实施可以在放射治疗治疗计划期间提供肺肿瘤体积的估计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验