成纤维细胞生长因子受体激活的结构基础。
Structural basis for fibroblast growth factor receptor activation.
作者信息
Mohammadi Moosa, Olsen Shaun K, Ibrahimi Omar A
机构信息
Department of Pharmacology, New York University School of Medicine, 550 First Avenue, MSB 425, New York, NY 10016, USA.
出版信息
Cytokine Growth Factor Rev. 2005 Apr;16(2):107-37. doi: 10.1016/j.cytogfr.2005.01.008.
FGF signaling plays a ubiquitous role in human biology as a regulator of embryonic development, homeostasis and regenerative processes. In addition, aberrant FGF signaling leads to diverse human pathologies including skeletal, olfactory, and metabolic disorders as well as cancer. FGFs execute their pleiotropic biological actions by binding, dimerizing and activating cell surface FGF receptors (FGFRs). Proper regulation of FGF-FGFR binding specificity is essential for the regulation of FGF signaling and is achieved through primary sequence variations among the 18 FGFs and seven FGFRs. The severity of human skeletal syndromes arising from mutations that violate FGF-FGFR specificity is a testament to the importance of maintaining precision in FGF-FGFR specificity. The discovery that heparin/heparan sulfate (HS) proteoglycans are required for FGF signaling led to numerous models for FGFR dimerization and heralded one of the most controversial issues in FGF signaling. Recent crystallographic analyses have led to two fundamentally different models for FGFR dimerization. These models differ in both the stoichiometry and minimal length of heparin required for dimerization, the quaternary arrangement of FGF, FGFR and heparin in the dimer, and in the mechanism of 1:1 FGF-FGFR recognition and specificity. In this review, we provide an overview of recent structural and biochemical studies used to differentiate between the two crystallographic models. Interestingly, the structural and biophysical analyses of naturally occurring pathogenic FGFR mutations have provided the most compelling and unbiased evidences for the correct mechanisms for FGF-FGFR dimerization and binding specificity. The structural analyses of different FGF-FGFR complexes have also shed light on the intricate mechanisms determining FGF-FGFR binding specificity and promiscuity and also provide a plausible explanation for the molecular basis of a large number craniosynostosis mutations.
成纤维细胞生长因子(FGF)信号传导作为胚胎发育、体内平衡和再生过程的调节因子,在人类生物学中发挥着普遍作用。此外,FGF信号传导异常会导致多种人类疾病,包括骨骼、嗅觉和代谢紊乱以及癌症。FGF通过结合、二聚化和激活细胞表面的FGF受体(FGFR)来执行其多效性生物学作用。FGF-FGFR结合特异性的适当调节对于FGF信号传导的调节至关重要,这是通过18种FGF和7种FGFR之间的一级序列变异实现的。因违反FGF-FGFR特异性的突变而引发的人类骨骼综合征的严重程度证明了维持FGF-FGFR特异性精确性的重要性。肝素/硫酸乙酰肝素(HS)蛋白聚糖是FGF信号传导所必需的这一发现,催生了众多FGFR二聚化模型,并引发了FGF信号传导中最具争议的问题之一。最近的晶体学分析得出了两种根本不同的FGFR二聚化模型。这些模型在二聚化所需肝素的化学计量和最小长度、二聚体中FGF、FGFR和肝素的四级排列以及1:1 FGF-FGFR识别和特异性机制方面均存在差异。在本综述中,我们概述了用于区分这两种晶体学模型的最新结构和生化研究。有趣的是,对天然存在的致病性FGFR突变的结构和生物物理分析为FGF-FGFR二聚化和结合特异性的正确机制提供了最有说服力且无偏见的证据。不同FGF-FGFR复合物的结构分析也揭示了决定FGF-FGFR结合特异性和混杂性(非特异性结合)的复杂机制,同时也为大量颅缝早闭突变的分子基础提供了合理的解释。