Suppr超能文献

Human saphenous vein coronary artery bypass graft morphology, geometry and hemodynamics.

作者信息

Leask Richard L, Butany Jagdish, Johnston K Wayne, Ethier C Ross, Ojha Matadial

机构信息

Department of Chemical Engineering, McGill University, Montreal, Quebec.

出版信息

Ann Biomed Eng. 2005 Mar;33(3):301-9. doi: 10.1007/s10439-005-1732-z.

Abstract

Coronary artery bypass graft (CABG) failure has been linked to graft hemodynamics, in particular wall shear stress. This study characterizes the morphology, geometry and wall shear stress patterns in human CABGs. The intimal thickness (IT) in 49 human saphenous vein CABGs was measured by digital light microscopy. The geometry of six saphenous vein CABGs was replicated by post-mortem infusion of Batson's #17 anatomical corrosion casting compound. Graft hemodynamics were evaluated in two flow models, fabricated from the casts, under steady (Re = 110) and pulsatile flow (Re = 110, alpha = 2) conditions. Saphenous vein CABGs in situ for more than 2 months had, on average, the greatest IT on the hood and suture sites of the distal anastomosis. Floor thickening was highly variable and significantly less than IT at the hood, suture site and graft body. All casts showed an indentation along the floor and 5/6 casts displayed a sharp local curvature on the hood. In both flow models, a large increase in wall shear rate occurred on the hood, just proximal to the toe. The local geometry of the hood created this large spatial gradient in wall shear stress which is a likely factor in hood intimal hyperplasia.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验