Sautter Armin, Kaletas Basak Kükrer, Schmid Dietmar G, Dobrawa Rainer, Zimine Mikhail, Jung Günther, van Stokkum Ivo H M, De Cola Luisa, Williams René M, Würthner Frank
Institut für Organische Chemie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany.
J Am Chem Soc. 2005 May 11;127(18):6719-29. doi: 10.1021/ja0448216.
A molecular square with dimensions of about 4 nm, incorporating sixteen pyrene chromophores attached to four ditopic bay-functionalized perylene bisimide chromophores, has been synthesized by coordination to four Pt(II) phosphine corner units and fully characterized via NMR spectroscopy and ESI-FTICR mass spectrometry. Steady-state and time-resolved emission as well as femtosecond transient absorption studies reveal the presence of a highly efficient (>90%) and fast photoinduced energy transfer (k(en) approximately equal to 5.0 x 10(9) s(-1)) from the pyrene to the perylene bisimide chromophores and a very fast and efficient electron transfer (>94%, k(et) approximately equal to 5 x 10(11) up to 43 x 10(11) s(-1)). Spectrotemporal parametrization indicates upper excited-state electron-transfer processes, various energy and electron-transfer pathways, and chromophoric heterogeneity. Temperature-dependent time-resolved emission spectroscopy has shown that the acceptor emission lifetime increases with decreasing temperature from which an electron-transfer barrier is obtained. The extremely fast electron-transfer processes (substantially faster and more efficient than in the free ligand) that are normally only observed in solid materials, together with the closely packed structure of 20 chromophoric units, indicate that we can consider the molecular square as a monodisperse nanoaggregate: a molecularly defined ensemble of chromophores that partly behaves like a solid material.
一种尺寸约为4纳米的分子正方形已通过与四个Pt(II)膦角单元配位合成,该分子正方形包含连接到四个双位点海湾功能化苝二酰亚胺发色团上的十六个芘发色团,并通过核磁共振光谱和电喷雾傅里叶变换离子回旋共振质谱进行了全面表征。稳态和时间分辨发射以及飞秒瞬态吸收研究表明,存在从芘到苝二酰亚胺发色团的高效(>90%)且快速的光致能量转移(k(en)约等于5.0×10(9) s(-1))以及非常快速且高效的电子转移(>94%,k(et)约等于5×10(11)至43×10(11) s(-1))。光谱时间参数化表明存在上激发态电子转移过程、各种能量和电子转移途径以及发色团的不均匀性。温度依赖的时间分辨发射光谱表明,受体发射寿命随温度降低而增加,据此获得了电子转移势垒。通常仅在固体材料中观察到的极快电子转移过程(比游离配体中的过程快得多且效率更高),连同20个发色团单元的紧密堆积结构,表明我们可以将分子正方形视为单分散纳米聚集体:一种分子定义的发色团集合体,其部分行为类似于固体材料。