Ernst Leander, Song Hongwei, Kim Dongho, Würthner Frank
Universität Würzburg, Institut für Organische Chemie, Würzburg, Germany.
Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry, Yonsei University, Seoul, Republic of Korea.
Nat Chem. 2025 May;17(5):767-776. doi: 10.1038/s41557-025-01770-7. Epub 2025 Mar 14.
The mechanistic understanding of light-driven charge separation and charge-carrier transport within the frameworks of π-conjugated molecules is imperative to mimic natural photosynthesis and derive synthetic materials for solar energy conversion. In this regard, since the late 1980s, the distance and solvent dependence of stepwise (incoherent) charge-carrier hopping versus single-step (coherent) superexchange transport (tunnelling) have been studied in detail. Here we introduce structurally highly defined cofacially stacked donor-acceptor perylene bisimide arrays, which offer a high resemblance to natural systems. Similarity is achieved through controlling energy and electron transfer processes via intermolecular interactions between the π-stacked perylene bisimide subunits. Selective excitation of the donor induces electron transfer to the acceptor unit in polar solvents, facilitated by a 'through-stack' wire-like charge hopping mechanism with a low attenuation factor β = 0.21 Å, which suggests through-stack as being equally supportive for long-distance sequential electron transfer compared to the investigated 'through-bond' transfer along π-conjugated bridges.
在π共轭分子框架内,对光驱动电荷分离和电荷载流子传输的机理理解对于模拟自然光合作用和开发用于太阳能转换的合成材料至关重要。在这方面,自20世纪80年代末以来,人们对逐步(非相干)电荷载流子跳跃与单步(相干)超交换传输(隧穿)的距离和溶剂依赖性进行了详细研究。在此,我们引入了结构高度明确的共面堆叠供体-受体苝二酰亚胺阵列,其与自然系统高度相似。通过π堆叠苝二酰亚胺亚基之间的分子间相互作用控制能量和电子转移过程来实现相似性。在极性溶剂中,供体的选择性激发会诱导电子转移到受体单元,这是由一种“穿层”线状电荷跳跃机制促进的,其衰减因子β = 0.21 Å较低,这表明与沿着π共轭桥研究的“键间”转移相比,穿层同样有利于长距离顺序电子转移。