Sutherland Jason S, Bhakta Varsha, Sheffield William P
Canadian Blood Services, Research and Development Department, Canada.
Thromb Res. 2006;117(4):447-61. doi: 10.1016/j.thromres.2005.03.004.
Following thrombin cleavage of the reactive centre (P1-P1'; L444-S445) of the serpin heparin cofactor II (HCII), HCII traps thrombin (IIa) in a stable inhibitory complex. To compare HCII to other serpins we substituted: the P13-P5' residues of HCII with those of alpha(1)-proteinase inhibitor (alpha(1)-PI), alpha(1)-PI (M358R), or antithrombin (AT); the P4-P1, P3-P1, and P2-P1 residues of HCII with those of AT; and made L444A/H/K/M or R point mutations. We also combined L444R with changes in the glycosaminoglycan binding domain collectively termed MutD.
Variants were made by site-directed mutagenesis, expressed in bacteria, purified and characterized electrophoretically and kinetically.
Of the P13-P5' mutants, only the alpha(1)-PI-loop variant retained anti-IIa activity, but less than the corresponding L444M. Heparin-catalyzed rate constants for IIa inhibition were reduced vs. wild-type (WT) by at most three-fold for all P1 mutants save L444A (reduced 20-fold). L444R and L444K inhibited IIa>50- and >6-fold more rapidly than WT in heparin-free reactions, but stoichiometries of inhibition were increased for all variants. HCII-IIa complexes of all P1 variants were stable in the absence of heparin, but those of the L444K and L444R variants released active IIa over time with heparin. Limited proteolysis of these two groups of HCII-IIa complexes produced different fragmentation patterns consistent with conformational differences. The combination of either substituted AT residues at P2, P3, and P4, or the MutD mutations with L444R resulted in complex instability with or without heparin. This is the first description of HCII-IIa complexes of transient stability forming in the absence of heparin, and may explain the extent to which the reactive centre loop of HCII differs from that of AT.
在丝氨酸蛋白酶抑制剂肝素辅因子II(HCII)的反应中心(P1 - P1';L444 - S445)被凝血酶切割后,HCII将凝血酶(IIa)捕获在一个稳定的抑制复合物中。为了将HCII与其他丝氨酸蛋白酶抑制剂进行比较,我们进行了如下替换:将HCII的P13 - P5'残基替换为α1 - 蛋白酶抑制剂(α1 - PI)、α1 - PI(M358R)或抗凝血酶(AT)的相应残基;将HCII的P4 - P1、P3 - P1和P2 - P1残基替换为AT的相应残基;并进行L444A/H/K/M或R点突变。我们还将L444R与糖胺聚糖结合域的变化(统称为MutD)相结合。
通过定点诱变制备变体,在细菌中表达,纯化,并进行电泳和动力学表征。
在P13 - P5'突变体中,只有α1 - PI环变体保留了抗IIa活性,但低于相应的L444M。除L444A(降低20倍)外,所有P1突变体对IIa的肝素催化抑制速率常数与野生型(WT)相比最多降低了三倍。在无肝素反应中,L444R和L444K对IIa的抑制速度比WT快50倍以上和6倍以上,但所有变体的抑制化学计量比均增加。所有P1变体的HCII - IIa复合物在无肝素的情况下是稳定的,但L444K和L444R变体的复合物在有肝素的情况下会随着时间的推移释放出活性IIa。对这两组HCII - IIa复合物进行有限的蛋白酶解产生了不同的片段化模式,这与构象差异一致。在P2、P3和P4处替换AT残基,或MutD突变与L444R相结合,无论有无肝素,都会导致复合物不稳定。这是首次描述在无肝素情况下形成的具有短暂稳定性的HCII - IIa复合物,这可能解释了HCII反应中心环与AT反应中心环的差异程度。