Han Sung-Jun, Hamdan Fadi F, Kim Soo-Kyung, Jacobson Kenneth A, Brichta Lars, Bloodworth Lanh M, Li Jian H, Wess Jürgen
Molecular Signaling Section, Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA.
J Biol Chem. 2005 Jul 1;280(26):24870-9. doi: 10.1074/jbc.M500379200. Epub 2005 May 2.
The conformational changes that convert G protein-coupled receptors (GPCRs) activated by diffusible ligands from their resting into their active states are not well understood at present. To address this issue, we used the M(3) muscarinic acetylcholine receptor, a prototypical class A GPCR, as a model system, employing a recently developed disulfide cross-linking strategy that allows the formation of disulfide bonds using Cys-substituted mutant M(3) muscarinic receptors present in their native membrane environment. In the present study, we generated and analyzed 30 double Cys mutant M(3) receptors, all of which contained one Cys substitution within the C-terminal portion of transmembrane domain (TM) VII (Val-541 to Ser-546) and another one within the C-terminal segment of TM I (Val-88 to Phe-92). Following their transient expression in COS-7 cells, all mutant receptors were initially characterized in radioligand binding and second messenger assays (carbachol-induced stimulation of phosphatidylinositol hydrolysis). This analysis showed that all 30 double Cys mutant M(3) receptors were able to bind muscarinic ligands with high affinity and retained the ability to stimulate G proteins with high efficacy. In situ disulfide cross-linking experiments revealed that the muscarinic agonist, carbachol, promoted the formation of cross-links between specific Cys pairs. The observed pattern of disulfide cross-links, together with receptor modeling studies, strongly suggested that M(3) receptor activation induces a major rotational movement of the C-terminal portion of TM VII and increases the proximity of the cytoplasmic ends of TM I and VII. These findings should be of relevance for other family A GPCRs.
目前,对于由可扩散配体激活的G蛋白偶联受体(GPCRs)从静息状态转变为活性状态时发生的构象变化,人们还了解得不够透彻。为了解决这个问题,我们使用M(3)毒蕈碱型乙酰胆碱受体(一种典型的A类GPCR)作为模型系统,采用了最近开发的二硫键交联策略,该策略允许在其天然膜环境中使用半胱氨酸取代的突变型M(3)毒蕈碱受体形成二硫键。在本研究中,我们生成并分析了30种双半胱氨酸突变型M(3)受体,所有这些受体在跨膜结构域(TM)VII的C末端部分(Val-541至Ser-546)含有一个半胱氨酸取代,在TM I的C末端片段(Val-88至Phe-92)含有另一个半胱氨酸取代。在COS-7细胞中瞬时表达后,所有突变受体最初通过放射性配体结合和第二信使测定(卡巴胆碱诱导的磷脂酰肌醇水解刺激)进行表征。该分析表明,所有30种双半胱氨酸突变型M(3)受体都能够以高亲和力结合毒蕈碱配体,并保留了高效刺激G蛋白的能力。原位二硫键交联实验表明,毒蕈碱激动剂卡巴胆碱促进了特定半胱氨酸对之间交联的形成。观察到的二硫键交联模式,连同受体建模研究,强烈表明M(3)受体激活诱导了TM VII C末端部分的主要旋转运动,并增加了TM I和VII细胞质末端的接近度。这些发现应该与其他A类GPCR家族相关。