Wess Jürgen, Han Sung-Jun, Kim Soo-Kyung, Jacobson Kenneth A, Li Jian Hua
Molecular Signaling Section and Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
Trends Pharmacol Sci. 2008 Dec;29(12):616-25. doi: 10.1016/j.tips.2008.08.006. Epub 2008 Oct 4.
Little is known about the nature of the conformational changes that convert G-protein-coupled receptors (GPCRs), which bind diffusible ligands, from their resting into their active states. To gain structural insight into this process, various laboratories have used disulfide cross-linking strategies involving cysteine-substituted mutant GPCRs. Several recent disulfide cross-linking studies using the M(3) muscarinic acetylcholine receptor as a model system have led to novel insights into the conformational changes associated with the activation of this prototypical class I GPCR. These structural changes are predicted to involve multiple receptor regions, primarily distinct segments of transmembrane helices III, VI and VII and helix 8. Given the high degree of structural homology found among most GPCRs, it is likely that these findings will be of considerable general relevance. A better understanding of the molecular mechanisms underlying GPCR activation might lead to novel strategies aimed at modulating GPCR function for therapeutic purposes.
对于将结合可扩散配体的G蛋白偶联受体(GPCRs)从静息状态转变为激活状态的构象变化的本质,人们了解甚少。为了深入了解这一过程的结构,各个实验室采用了涉及半胱氨酸取代突变型GPCRs的二硫键交联策略。最近几项以M(3)毒蕈碱型乙酰胆碱受体作为模型系统的二硫键交联研究,为与这种典型的I类GPCR激活相关的构象变化带来了新的见解。预计这些结构变化涉及多个受体区域,主要是跨膜螺旋III、VI和VII以及螺旋8的不同片段。鉴于在大多数GPCRs中发现的高度结构同源性,这些发现很可能具有相当广泛的普遍意义。更好地理解GPCR激活背后的分子机制可能会带来旨在调节GPCR功能以用于治疗目的的新策略。