Department of Pharmacology, Monash University, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria 3052, Australia.
J Biol Chem. 2010 Mar 5;285(10):7459-74. doi: 10.1074/jbc.M109.094011. Epub 2010 Jan 5.
Muscarinic acetylcholine receptors contain at least one allosteric site that is topographically distinct from the acetylcholine, orthosteric binding site. Although studies have investigated the basis of allosteric modulation at these receptors, less is known about putative allosteric ligands that activate the receptor in their own right. We generated M(2) muscarinic acetylcholine receptor mutations in either the orthosteric site in transmembrane helices 3 and 6 (TM3 and -6) or part of an allosteric site involving the top of TM2, the second extracellular (E2) loop, and the top of TM7 and investigated their effects on the binding and function of the novel selective (putative allosteric) agonists (AC-42 (4-n-butyl-1-(4-(2-methylphenyl)-4-oxo-1-butyl)piperidine HCl), 77-LH-28-1 (1-(3-(4-butyl-1-piperidinyl)propyl)-3,3-dihydro-2(1H)-quinolinone), and N-desmethylclozapine) as well as the bitopic orthosteric/allosteric ligand, McN-A-343 (4-(m-chlorophenyl-carbamoyloxy)-2-butynyltrimethylammonium). Four classes of agonists were identified, depending on their response to the mutations, suggesting multiple, distinct modes of agonist-receptor interaction. Interestingly, with the exception of 77-LH-28-1, allosteric site mutations had no effect on the affinity of any of the agonists tested, but some mutations in the E2 loop influenced the efficacy of both orthosteric and novel selective agonists, highlighting a role for this region of the receptor in modulating activation status. Two point mutations (Y104(3.33)A (Ballesteros and Weinstein numbers in superscript) in the orthosteric and Y177A in the allosteric site) unmasked ligand-selective and signaling pathway-selective effects, providing evidence for the existence of pathway-specific receptor conformations. Molecular modeling of 77-LH-28-1 and N-desmethylclozapine yielded novel binding poses consistent with the possibility that the functional selectivity of such agents may arise from a bitopic mechanism.
毒蕈碱型乙酰胆碱受体至少包含一个变构结合位点,该位点在拓扑结构上不同于乙酰胆碱的正位结合位点。尽管已有研究探讨了这些受体的变构调节基础,但对于能够以自身方式激活受体的假定变构配体知之甚少。我们在跨膜螺旋 3 和 6(TM3 和 -6)中的正位结合位点或涉及 TM2 顶部、第二细胞外(E2)环和 TM7 顶部的变构结合位点的一部分中生成了 M2 毒蕈碱型乙酰胆碱受体突变体,并研究了它们对新型选择性(假定变构)激动剂(AC-42(4-正丁基-1-(4-(2-甲基苯基)-4-氧代-1-丁基)哌啶盐酸盐)、77-LH-28-1(1-(3-(4-正丁基-1-哌啶基)丙基)-3,3-二氢-2(1H)-喹啉酮)和 N-去甲氯氮平)以及双位点正位/变构配体 McN-A-343(4-(间氯苯甲酰基氨甲酰氧基)-2-丁炔基三甲基铵)的结合和功能的影响。根据对突变的反应,鉴定了四类激动剂,这表明存在多种不同的激动剂-受体相互作用模式。有趣的是,除了 77-LH-28-1 之外,变构结合位点的突变对测试的任何激动剂的亲和力都没有影响,但 E2 环中的一些突变影响了正位和新型选择性激动剂的效力,这突出了该受体区域在调节激活状态方面的作用。两个点突变(正位的 Y104(3.33)A(超脚本中的 Ballesteros 和 Weinstein 编号)和变构位点的 Y177A)揭示了配体选择性和信号转导途径选择性效应,为存在途径特异性受体构象提供了证据。77-LH-28-1 和 N-去甲氯氮平的分子建模产生了新的结合构象,这表明此类药物的功能选择性可能源于双位点机制。