Zhang Wendy, Robinson Douglas N
Department of Physics, James Franck Institute, University of Chicago, Chicago, IL 60637, USA.
Proc Natl Acad Sci U S A. 2005 May 17;102(20):7186-91. doi: 10.1073/pnas.0502545102. Epub 2005 May 3.
Cytokinesis, the fission of a mother cell into two daughter cells, is a simple and dramatic cell shape change. Here, we examine the dynamics of cytokinesis by using a combination of microscopy, dynamic measurements, and genetic analysis. We find that cytokinesis proceeds through a single sequence of shape changes, but the kinetics of the transformation from one shape to another differs dramatically between strains. We interpret the measurements in a simple and quantitative manner by using a previously uncharacterized analytic model. From the analysis, wild-type cytokinesis appears to proceed through an active, extremely regulated process in which globally distributed proteins generate resistive forces that slow the rate of furrow ingression. Finally, we propose that, in addition to myosin II, a Laplace pressure, resulting from material properties and the geometry of the dividing cell, generates force to help drive furrow ingression late in cytokinesis.
胞质分裂,即母细胞分裂为两个子细胞的过程,是一种简单而显著的细胞形态变化。在这里,我们通过结合显微镜观察、动态测量和遗传分析来研究胞质分裂的动力学。我们发现胞质分裂通过一系列单一的形态变化进行,但不同菌株从一种形态转变为另一种形态的动力学差异很大。我们使用一个先前未被描述的分析模型以简单定量的方式解释这些测量结果。通过分析,野生型胞质分裂似乎通过一个活跃的、高度受调控的过程进行,在这个过程中,全局分布的蛋白质产生阻力,减缓沟陷的速率。最后,我们提出,除了肌球蛋白II之外,由分裂细胞的物质特性和几何形状产生的拉普拉斯压力会产生力,以帮助在胞质分裂后期驱动沟陷。