Suppr超能文献

肌球蛋白与肌动蛋白交联蛋白之间的相互作用控制着胞质分裂的收缩动力学和力学。

Interactions between myosin and actin crosslinkers control cytokinesis contractility dynamics and mechanics.

作者信息

Reichl Elizabeth M, Ren Yixin, Morphew Mary K, Delannoy Michael, Effler Janet C, Girard Kristine D, Divi Srikanth, Iglesias Pablo A, Kuo Scot C, Robinson Douglas N

机构信息

Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.

出版信息

Curr Biol. 2008 Apr 8;18(7):471-80. doi: 10.1016/j.cub.2008.02.056. Epub 2008 Mar 27.

Abstract

INTRODUCTION

Contractile networks are fundamental to many cellular functions, particularly cytokinesis and cell motility. Contractile networks depend on myosin-II mechanochemistry to generate sliding force on the actin polymers. However, to be contractile, the networks must also be crosslinked by crosslinking proteins, and to change the shape of the cell, the network must be linked to the plasma membrane. Discerning how this integrated network operates is essential for understanding cytokinesis contractility and shape control. Here, we analyzed the cytoskeletal network that drives furrow ingression in Dictyostelium.

RESULTS

We establish that the actin polymers are assembled into a meshwork and that myosin-II does not assemble into a discrete ring in the Dictyostelium cleavage furrow of adherent cells. We show that myosin-II generates regional mechanics by increasing cleavage furrow stiffness and slows furrow ingression during late cytokinesis as compared to myoII nulls. Actin crosslinkers dynacortin and fimbrin similarly slow furrow ingression and contribute to cell mechanics in a myosin-II-dependent manner. By using FRAP, we show that the actin crosslinkers have slower kinetics in the cleavage furrow cortex than in the pole, that their kinetics differ between wild-type and myoII null cells, and that the protein dynamics of each crosslinker correlate with its impact on cortical mechanics.

CONCLUSIONS

These observations suggest that myosin-II along with actin crosslinkers establish local cortical tension and elasticity, allowing for contractility independent of a circumferential cytoskeletal array. Furthermore, myosin-II and actin crosslinkers may influence each other as they modulate the dynamics and mechanics of cell-shape change.

摘要

引言

收缩网络对于许多细胞功能至关重要,尤其是胞质分裂和细胞运动。收缩网络依赖肌球蛋白-II的机械化学作用在肌动蛋白聚合物上产生滑动力。然而,要实现收缩,网络还必须由交联蛋白交联,并且为了改变细胞形状,网络必须与质膜相连。弄清楚这个整合网络如何运作对于理解胞质分裂收缩性和形状控制至关重要。在此,我们分析了驱动盘基网柄菌中沟侵入的细胞骨架网络。

结果

我们确定在贴壁细胞的盘基网柄菌分裂沟中,肌动蛋白聚合物组装成一个网络,而肌球蛋白-II不会组装成一个离散的环。我们表明,与肌球蛋白-II缺失细胞相比,肌球蛋白-II通过增加分裂沟硬度产生局部力学作用,并在胞质分裂后期减缓沟侵入。肌动蛋白交联蛋白动力蛋白和丝束蛋白同样减缓沟侵入,并以肌球蛋白-II依赖的方式对细胞力学产生影响。通过使用荧光恢复后光漂白技术(FRAP),我们表明肌动蛋白交联蛋白在分裂沟皮质中的动力学比在两极慢,它们在野生型和肌球蛋白-II缺失细胞之间的动力学不同,并且每个交联蛋白的蛋白质动力学与其对皮质力学的影响相关。

结论

这些观察结果表明,肌球蛋白-II与肌动蛋白交联蛋白一起建立局部皮质张力和弹性,从而实现独立于周向细胞骨架阵列的收缩性。此外,肌球蛋白-II和肌动蛋白交联蛋白在调节细胞形状变化的动力学和力学时可能相互影响。

相似文献

1
Interactions between myosin and actin crosslinkers control cytokinesis contractility dynamics and mechanics.
Curr Biol. 2008 Apr 8;18(7):471-80. doi: 10.1016/j.cub.2008.02.056. Epub 2008 Mar 27.
2
On the mechanism of cleavage furrow ingression in Dictyostelium.
Cell Struct Funct. 2001 Dec;26(6):577-84. doi: 10.1247/csf.26.577.
3
Deconvolution of the cellular force-generating subsystems that govern cytokinesis furrow ingression.
PLoS Comput Biol. 2012;8(4):e1002467. doi: 10.1371/journal.pcbi.1002467. Epub 2012 Apr 26.
4
Dictyostelium myosin II mechanochemistry promotes active behavior of the cortex on long time scales.
Proc Natl Acad Sci U S A. 2006 Feb 14;103(7):2103-8. doi: 10.1073/pnas.0508819103. Epub 2006 Feb 3.
5
14-3-3 coordinates microtubules, Rac, and myosin II to control cell mechanics and cytokinesis.
Curr Biol. 2010 Nov 9;20(21):1881-9. doi: 10.1016/j.cub.2010.09.048. Epub 2010 Oct 14.
6
Mechanical stress and network structure drive protein dynamics during cytokinesis.
Curr Biol. 2015 Mar 2;25(5):663-70. doi: 10.1016/j.cub.2015.01.025. Epub 2015 Feb 19.
7
Precise Tuning of Cortical Contractility Regulates Cell Shape during Cytokinesis.
Cell Rep. 2020 Apr 7;31(1):107477. doi: 10.1016/j.celrep.2020.03.041.
8
Direct evidence for roles of phosphorylated regulatory light chain of myosin II in furrow ingression during cytokinesis in HeLa cells.
Genes Cells. 2009 May;14(5):555-68. doi: 10.1111/j.1365-2443.2009.01288.x. Epub 2009 Apr 15.
9
Genetic suppression of a phosphomimic myosin II identifies system-level factors that promote myosin II cleavage furrow accumulation.
Mol Biol Cell. 2014 Dec 15;25(25):4150-65. doi: 10.1091/mbc.E14-08-1322. Epub 2014 Oct 15.
10
Myosin-II-dependent localization and dynamics of F-actin during cytokinesis.
Curr Biol. 2005 Apr 26;15(8):724-31. doi: 10.1016/j.cub.2005.02.055.

引用本文的文献

1
Complementary cytoskeletal feedback loops control signal transduction excitability and cell polarity.
Nat Commun. 2025 Aug 12;16(1):7482. doi: 10.1038/s41467-025-62799-3.
2
Emergence of multiple collective motility modes in a physical model of cell chains.
NPJ Syst Biol Appl. 2025 May 22;11(1):52. doi: 10.1038/s41540-025-00529-7.
3
Softness or Stiffness What Contributes to Cancer and Cancer Metastasis?
Cells. 2025 Apr 12;14(8):584. doi: 10.3390/cells14080584.
4
Cellular and Nuclear Forces: An Overview.
Methods Mol Biol. 2025;2881:3-39. doi: 10.1007/978-1-0716-4280-1_1.
5
Connecting single-molecule and superresolution microscopies to cell biology through theoretical modeling.
Biophys J. 2025 Jan 7;124(1):15-24. doi: 10.1016/j.bpj.2024.11.3308. Epub 2024 Nov 26.
6
Roles of membrane mechanics-mediated feedback in membrane traffic.
Curr Opin Cell Biol. 2024 Aug;89:102401. doi: 10.1016/j.ceb.2024.102401. Epub 2024 Jul 16.
7
Discovery and Quantitative Dissection of Cytokinesis Mechanisms Using Dictyostelium discoideum.
Methods Mol Biol. 2024;2814:1-27. doi: 10.1007/978-1-0716-3894-1_1.
8
The actin-bundling protein, PLS3, is part of the mechanoresponsive machinery that regulates osteoblast mineralization.
Front Cell Dev Biol. 2023 Nov 27;11:1141738. doi: 10.3389/fcell.2023.1141738. eCollection 2023.
9
Polarized branched Actin modulates cortical mechanics to produce unequal-size daughters during asymmetric division.
Nat Cell Biol. 2023 Feb;25(2):235-245. doi: 10.1038/s41556-022-01058-9. Epub 2023 Feb 6.
10
Actomyosin-Driven Division of a Synthetic Cell.
ACS Synth Biol. 2022 Oct 21;11(10):3120-3133. doi: 10.1021/acssynbio.2c00287. Epub 2022 Sep 27.

本文引用的文献

2
Three-dimensional arrangement of F-actin in the contractile ring of fission yeast.
J Cell Biol. 2007 Aug 27;178(5):765-71. doi: 10.1083/jcb.200612018.
3
Nonequilibrium mechanics of active cytoskeletal networks.
Science. 2007 Jan 19;315(5810):370-3. doi: 10.1126/science.1134404.
4
Reversible stress softening of actin networks.
Nature. 2007 Jan 18;445(7125):295-8. doi: 10.1038/nature05459.
5
Enlazin, a natural fusion of two classes of canonical cytoskeletal proteins, contributes to cytokinesis dynamics.
Mol Biol Cell. 2006 Dec;17(12):5275-86. doi: 10.1091/mbc.e06-08-0767. Epub 2006 Oct 18.
6
Mitosis-specific mechanosensing and contractile-protein redistribution control cell shape.
Curr Biol. 2006 Oct 10;16(19):1962-7. doi: 10.1016/j.cub.2006.08.027.
7
Dictyostelium myosin II mechanochemistry promotes active behavior of the cortex on long time scales.
Proc Natl Acad Sci U S A. 2006 Feb 14;103(7):2103-8. doi: 10.1073/pnas.0508819103. Epub 2006 Feb 3.
8
Mechanical forces alter zyxin unbinding kinetics within focal adhesions of living cells.
J Cell Physiol. 2006 Apr;207(1):187-94. doi: 10.1002/jcp.20550.
9
Multiple myosin II heavy chain kinases: roles in filament assembly control and proper cytokinesis in Dictyostelium.
Mol Biol Cell. 2005 Sep;16(9):4256-66. doi: 10.1091/mbc.e05-03-0219. Epub 2005 Jun 29.
10
Adhesion-dependent and contractile ring-independent equatorial furrowing during cytokinesis in mammalian cells.
Mol Biol Cell. 2005 Aug;16(8):3865-72. doi: 10.1091/mbc.e05-03-0233. Epub 2005 Jun 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验