Suppr超能文献

肌球蛋白 II 与肌动蛋白交联蛋白皮质交联蛋白 I 通过协同相互作用进行机械传感。

Mechanosensing through cooperative interactions between myosin II and the actin crosslinker cortexillin I.

机构信息

Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.

出版信息

Curr Biol. 2009 Sep 15;19(17):1421-8. doi: 10.1016/j.cub.2009.07.018. Epub 2009 Jul 30.

Abstract

BACKGROUND

Mechanosensing governs many processes from molecular to organismal levels, including during cytokinesis where it ensures successful and symmetrical cell division. Although many proteins are now known to be force sensitive, myosin motors with their ATPase activity and force-sensitive mechanical steps are well poised to facilitate cellular mechanosensing. For a myosin motor to experience tension, the actin filament must also be anchored.

RESULTS

Here, we find a cooperative relationship between myosin II and the actin crosslinker cortexillin I where both proteins are essential for cellular mechanosensory responses. Although many functions of cortexillin I and myosin II are dispensable for cytokinesis, all are required for full mechanosensing. Our analysis demonstrates that this mechanosensor has three critical elements: the myosin motor where the lever arm acts as a force amplifier, a force-sensitive bipolar thick-filament assembly, and a long-lived actin crosslinker, which anchors the actin filament so that the motor may experience tension. We also demonstrate that a Rac small GTPase inhibits this mechanosensory module during interphase, allowing the module to be primarily active during cytokinesis.

CONCLUSIONS

Overall, myosin II and cortexillin I define a cellular-scale mechanosensor that controls cell shape during cytokinesis. This system is exquisitely tuned through the enzymatic properties of the myosin motor, its lever arm length, and bipolar thick-filament assembly dynamics. The system also requires cortexillin I to stably anchor the actin filament so that the myosin motor can experience tension. Through this cross-talk, myosin II and cortexillin I define a cellular-scale mechanosensor that monitors and corrects shape defects, ensuring symmetrical cell division.

摘要

背景

机械感知在从分子到生物体的多个层面上控制着许多过程,包括胞质分裂期间的细胞分裂。尽管现在已知许多蛋白质是力敏感的,但具有 ATP 酶活性和力敏感机械步骤的肌球蛋白马达非常适合促进细胞机械感知。为了使肌球蛋白马达感受到张力,肌动蛋白丝也必须被锚定。

结果

在这里,我们发现肌球蛋白 II 和肌动蛋白交联蛋白皮质醇 I 之间存在协同关系,这两种蛋白对于细胞机械感受器的反应都是必不可少的。尽管皮质醇 I 和肌球蛋白 II 的许多功能对于胞质分裂是可有可无的,但它们对于完全的机械感知都是必需的。我们的分析表明,这个机械感受器有三个关键要素:肌球蛋白马达,其中的杠杆臂充当力放大器;力敏感的双极厚丝组装;以及长寿命的肌动蛋白交联蛋白,它锚定肌动蛋白丝,使马达能够感受到张力。我们还证明,Rac 小 GTPase 在间期中抑制这个机械感受器模块,使其在胞质分裂期间主要活跃。

结论

总的来说,肌球蛋白 II 和皮质醇 I 定义了一个细胞尺度的机械感受器,它在胞质分裂期间控制细胞的形状。这个系统通过肌球蛋白马达的酶学特性、其杠杆臂长度和双极厚丝组装动力学得到了精细的调节。该系统还需要皮质醇 I 来稳定地锚定肌动蛋白丝,以使肌球蛋白马达能够感受到张力。通过这种相互作用,肌球蛋白 II 和皮质醇 I 定义了一个细胞尺度的机械感受器,它监测和纠正形状缺陷,确保细胞的对称分裂。

相似文献

1
Mechanosensing through cooperative interactions between myosin II and the actin crosslinker cortexillin I.
Curr Biol. 2009 Sep 15;19(17):1421-8. doi: 10.1016/j.cub.2009.07.018. Epub 2009 Jul 30.
2
Mitosis-specific mechanosensing and contractile-protein redistribution control cell shape.
Curr Biol. 2006 Oct 10;16(19):1962-7. doi: 10.1016/j.cub.2006.08.027.
3
A mechanosensory system governs myosin II accumulation in dividing cells.
Mol Biol Cell. 2012 Apr;23(8):1510-23. doi: 10.1091/mbc.E11-07-0601. Epub 2012 Feb 29.
4
Mechanical stress and network structure drive protein dynamics during cytokinesis.
Curr Biol. 2015 Mar 2;25(5):663-70. doi: 10.1016/j.cub.2015.01.025. Epub 2015 Feb 19.
5
Contractility kits promote assembly of the mechanoresponsive cytoskeletal network.
J Cell Sci. 2019 Jan 16;132(2):jcs226704. doi: 10.1242/jcs.226704.
6
14-3-3 coordinates microtubules, Rac, and myosin II to control cell mechanics and cytokinesis.
Curr Biol. 2010 Nov 9;20(21):1881-9. doi: 10.1016/j.cub.2010.09.048. Epub 2010 Oct 14.
8
Unilateral Cleavage Furrows in Multinucleate Cells.
Cells. 2020 Jun 18;9(6):1493. doi: 10.3390/cells9061493.
9
Cell shape regulation through mechanosensory feedback control.
J R Soc Interface. 2015 Aug 6;12(109):20150512. doi: 10.1098/rsif.2015.0512.
10
A continuum model of mechanosensation based on contractility kit assembly.
Biophys J. 2025 Jan 7;124(1):62-76. doi: 10.1016/j.bpj.2024.10.020. Epub 2024 Nov 8.

引用本文的文献

1
Capillary constrictions prime cancer cell tumorigenicity through PIEZO1.
Nat Commun. 2025 Sep 1;16(1):8160. doi: 10.1038/s41467-025-63374-6.
2
Complementary cytoskeletal feedback loops control signal transduction excitability and cell polarity.
Nat Commun. 2025 Aug 12;16(1):7482. doi: 10.1038/s41467-025-62799-3.
3
Capillary constrictions prime cancer cell tumorigenicity through PIEZO1.
bioRxiv. 2025 Jul 26:2025.07.22.666218. doi: 10.1101/2025.07.22.666218.
4
A low-cost electric micromanipulator and its application to single-cell electroporation.
Biophys Physicobiol. 2025 Apr 26;22(2):e220010. doi: 10.2142/biophysico.bppb-v22.0010. eCollection 2025.
5
Fabrication of 3D matrix microenvironment by two-photon lithography for mechanobiology study.
Mechanobiol Med. 2023 Jul 7;1(1):100010. doi: 10.1016/j.mbm.2023.100010. eCollection 2023 Sep.
6
Actin crosslinking is required for force sensing at tricellular junctions.
bioRxiv. 2025 Feb 24:2025.02.21.639590. doi: 10.1101/2025.02.21.639590.
7
A continuum model of mechanosensation based on contractility kit assembly.
Biophys J. 2025 Jan 7;124(1):62-76. doi: 10.1016/j.bpj.2024.10.020. Epub 2024 Nov 8.
8
PIP5K-Ras bistability initiates plasma membrane symmetry breaking to regulate cell polarity and migration.
bioRxiv. 2024 Sep 15:2024.09.15.613115. doi: 10.1101/2024.09.15.613115.
9
Particle-based model of mechanosensory contractility kit assembly.
Biophys J. 2022 Dec 6;121(23):4600-4614. doi: 10.1016/j.bpj.2022.10.031. Epub 2022 Oct 22.
10
The lectin Discoidin I acts in the cytoplasm to help assemble the contractile machinery.
J Cell Biol. 2022 Nov 7;221(11). doi: 10.1083/jcb.202202063. Epub 2022 Sep 27.

本文引用的文献

1
Mechanically activated integrin switch controls alpha5beta1 function.
Science. 2009 Jan 30;323(5914):642-4. doi: 10.1126/science.1168441.
2
Stretching single talin rod molecules activates vinculin binding.
Science. 2009 Jan 30;323(5914):638-41. doi: 10.1126/science.1162912.
3
Motor proteins: myosin mechanosensors.
Curr Biol. 2008 Sep 23;18(18):R860-2. doi: 10.1016/j.cub.2008.07.071.
4
Myosin I can act as a molecular force sensor.
Science. 2008 Jul 4;321(5885):133-6. doi: 10.1126/science.1159419.
5
Interactions between myosin and actin crosslinkers control cytokinesis contractility dynamics and mechanics.
Curr Biol. 2008 Apr 8;18(7):471-80. doi: 10.1016/j.cub.2008.02.056. Epub 2008 Mar 27.
6
Load-dependent mechanism of nonmuscle myosin 2.
Proc Natl Acad Sci U S A. 2007 Jun 12;104(24):9994-9. doi: 10.1073/pnas.0701181104. Epub 2007 Jun 4.
7
Mitosis-specific mechanosensing and contractile-protein redistribution control cell shape.
Curr Biol. 2006 Oct 10;16(19):1962-7. doi: 10.1016/j.cub.2006.08.027.
8
Matrix elasticity directs stem cell lineage specification.
Cell. 2006 Aug 25;126(4):677-89. doi: 10.1016/j.cell.2006.06.044.
9
Dictyostelium myosin II mechanochemistry promotes active behavior of the cortex on long time scales.
Proc Natl Acad Sci U S A. 2006 Feb 14;103(7):2103-8. doi: 10.1073/pnas.0508819103. Epub 2006 Feb 3.
10
Mechanisms of mechanotransduction.
Dev Cell. 2006 Jan;10(1):11-20. doi: 10.1016/j.devcel.2005.12.006.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验