Fred Ana L N, Jain Anil K
Instituto Superior Técnico, Instituto de Telecomunicações, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
IEEE Trans Pattern Anal Mach Intell. 2005 Jun;27(6):835-50. doi: 10.1109/TPAMI.2005.113.
We explore the idea of evidence accumulation (EAC) for combining the results of multiple clusterings. First, a clustering ensemble--a set of object partitions, is produced. Given a data set (n objects or patterns in d dimensions), different ways of producing data partitions are: 1) applying different clustering algorithms and 2) applying the same clustering algorithm with different values of parameters or initializations. Further, combinations of different data representations (feature spaces) and clustering algorithms can also provide a multitude of significantly different data partitionings. We propose a simple framework for extracting a consistent clustering, given the various partitions in a clustering ensemble. According to the EAC concept, each partition is viewed as an independent evidence of data organization, individual data partitions being combined, based on a voting mechanism, to generate a new n x n, similarity matrix between the n patterns. The final data partition of the n patterns is obtained by applying a hierarchical agglomerative clustering algorithm on this matrix. We have developed a theoretical framework for the analysis of the proposed clustering combination strategy and its evaluation, based on the concept of mutual information between data partitions. Stability of the results is evaluated using bootstrapping techniques. A detailed discussion of an evidence accumulation-based clustering algorithm, using a split and merge strategy based on the K-means clustering algorithm, is presented. Experimental results of the proposed method on several synthetic and real data sets are compared with other combination strategies, and with individual clustering results produced by well-known clustering algorithms.
我们探讨了用于合并多个聚类结果的证据积累(EAC)概念。首先,生成一个聚类集成——一组对象划分。给定一个数据集(d维中的n个对象或模式),生成数据划分的不同方法有:1)应用不同的聚类算法,以及2)使用不同的参数值或初始化来应用相同的聚类算法。此外,不同数据表示(特征空间)和聚类算法的组合也可以提供大量显著不同的数据划分。我们提出了一个简单的框架,用于在聚类集成中给定各种划分的情况下提取一致的聚类。根据EAC概念,每个划分都被视为数据组织的独立证据,基于投票机制将各个数据划分组合起来,以生成n个模式之间的新的n×n相似性矩阵。通过对该矩阵应用层次凝聚聚类算法来获得n个模式的最终数据划分。我们基于数据划分之间的互信息概念,开发了一个理论框架来分析所提出的聚类组合策略及其评估。使用自助法技术评估结果的稳定性。详细讨论了一种基于证据积累的聚类算法,该算法使用基于K均值聚类算法的分裂和合并策略。将所提出方法在几个合成数据集和真实数据集上的实验结果与其他组合策略以及著名聚类算法产生的单个聚类结果进行了比较。