Suppr超能文献

一种利用人类皮质脑电图信号的脑机接口。

A brain-computer interface using electrocorticographic signals in humans.

作者信息

Leuthardt Eric C, Schalk Gerwin, Wolpaw Jonathan R, Ojemann Jeffrey G, Moran Daniel W

机构信息

Department of Neurological Surgery, Barnes-Jewish Hospital, St Louis, MO 63110, USA.

出版信息

J Neural Eng. 2004 Jun;1(2):63-71. doi: 10.1088/1741-2560/1/2/001. Epub 2004 Jun 14.

Abstract

Brain-computer interfaces (BCIs) enable users to control devices with electroencephalographic (EEG) activity from the scalp or with single-neuron activity from within the brain. Both methods have disadvantages: EEG has limited resolution and requires extensive training, while single-neuron recording entails significant clinical risks and has limited stability. We demonstrate here for the first time that electrocorticographic (ECoG) activity recorded from the surface of the brain can enable users to control a one-dimensional computer cursor rapidly and accurately. We first identified ECoG signals that were associated with different types of motor and speech imagery. Over brief training periods of 3-24 min, four patients then used these signals to master closed-loop control and to achieve success rates of 74-100% in a one-dimensional binary task. In additional open-loop experiments, we found that ECoG signals at frequencies up to 180 Hz encoded substantial information about the direction of two-dimensional joystick movements. Our results suggest that an ECoG-based BCI could provide for people with severe motor disabilities a non-muscular communication and control option that is more powerful than EEG-based BCIs and is potentially more stable and less traumatic than BCIs that use electrodes penetrating the brain.

摘要

脑机接口(BCIs)使用户能够通过头皮上的脑电图(EEG)活动或大脑内部的单神经元活动来控制设备。这两种方法都有缺点:EEG分辨率有限且需要大量训练,而单神经元记录存在重大临床风险且稳定性有限。我们在此首次证明,从大脑表面记录的皮质脑电图(ECoG)活动能够使用户快速且准确地控制一维计算机光标。我们首先识别出与不同类型的运动和言语想象相关的ECoG信号。然后,四名患者在3 - 24分钟的简短训练期内,利用这些信号掌握了闭环控制,并在一维二元任务中实现了74% - 100%的成功率。在额外的开环实验中,我们发现高达180赫兹频率的ECoG信号编码了有关二维操纵杆运动方向的大量信息。我们的研究结果表明,基于ECoG的脑机接口可以为严重运动障碍患者提供一种非肌肉的通信和控制选项,该选项比基于EEG的脑机接口更强大,并且与使用穿透大脑电极的脑机接口相比,可能更稳定且创伤更小。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验