Suppr超能文献

非侵入式脑信号快速实现计算机光标控制。

Fast attainment of computer cursor control with noninvasively acquired brain signals.

机构信息

Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA.

出版信息

J Neural Eng. 2011 Jun;8(3):036010. doi: 10.1088/1741-2560/8/3/036010. Epub 2011 Apr 15.

Abstract

Brain-computer interface (BCI) systems are allowing humans and non-human primates to drive prosthetic devices such as computer cursors and artificial arms with just their thoughts. Invasive BCI systems acquire neural signals with intracranial or subdural electrodes, while noninvasive BCI systems typically acquire neural signals with scalp electroencephalography (EEG). Some drawbacks of invasive BCI systems are the inherent risks of surgery and gradual degradation of signal integrity. A limitation of noninvasive BCI systems for two-dimensional control of a cursor, in particular those based on sensorimotor rhythms, is the lengthy training time required by users to achieve satisfactory performance. Here we describe a novel approach to continuously decoding imagined movements from EEG signals in a BCI experiment with reduced training time. We demonstrate that, using our noninvasive BCI system and observational learning, subjects were able to accomplish two-dimensional control of a cursor with performance levels comparable to those of invasive BCI systems. Compared to other studies of noninvasive BCI systems, training time was substantially reduced, requiring only a single session of decoder calibration (∼ 20 min) and subject practice (∼ 20 min). In addition, we used standardized low-resolution brain electromagnetic tomography to reveal that the neural sources that encoded observed cursor movement may implicate a human mirror neuron system. These findings offer the potential to continuously control complex devices such as robotic arms with one's mind without lengthy training or surgery.

摘要

脑机接口 (BCI) 系统正在使人类和非人类灵长类动物仅通过思维来控制假肢设备,如计算机光标和机械手臂。有创 BCI 系统通过颅内或硬膜下电极获取神经信号,而非侵入性 BCI 系统通常通过头皮脑电图 (EEG) 获取神经信号。有创 BCI 系统的一些缺点是手术固有的风险和信号完整性的逐渐恶化。对于二维光标控制,特别是基于感觉运动节律的非侵入性 BCI 系统的一个限制是用户需要很长的训练时间才能达到令人满意的性能。在这里,我们描述了一种新的方法,可以在 BCI 实验中减少训练时间,从 EEG 信号中连续解码想象中的运动。我们证明,使用我们的非侵入性 BCI 系统和观察学习,受试者能够以与有创 BCI 系统相当的性能水平完成二维光标控制。与其他非侵入性 BCI 系统的研究相比,训练时间大大缩短,只需要一次解码器校准(约 20 分钟)和受试者练习(约 20 分钟)。此外,我们使用标准化的低分辨率脑电磁断层扫描来揭示,编码观察到的光标运动的神经源可能涉及人类的镜像神经元系统。这些发现提供了一种潜力,可以在不需要长时间训练或手术的情况下,用思维连续控制复杂的设备,如机械臂。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验