Suppr超能文献

应用于动态钳实验的实时数值积分方法分析。

Analysis of real-time numerical integration methods applied to dynamic clamp experiments.

作者信息

Butera Robert J, McCarthy Maeve L

机构信息

Laboratory for Neuroengineering, Georgia Institute of Technology, Atlanta, GA 30332-0535, USA.

出版信息

J Neural Eng. 2004 Dec;1(4):187-94. doi: 10.1088/1741-2560/1/4/001. Epub 2004 Nov 17.

Abstract

Real-time systems are frequently used as an experimental tool, whereby simulated models interact in real time with neurophysiological experiments. The most demanding of these techniques is known as the dynamic clamp, where simulated ion channel conductances are artificially injected into a neuron via intracellular electrodes for measurement and stimulation. Methodologies for implementing the numerical integration of the gating variables in real time typically employ first-order numerical methods, either Euler or exponential Euler (EE). EE is often used for rapidly integrating ion channel gating variables. We find via simulation studies that for small time steps, both methods are comparable, but at larger time steps, EE performs worse than Euler. We derive error bounds for both methods, and find that the error can be characterized in terms of two ratios: time step over time constant, and voltage measurement error over the slope factor of the steady-state activation curve of the voltage-dependent gating variable. These ratios reliably bound the simulation error and yield results consistent with the simulation analysis. Our bounds quantitatively illustrate how measurement error restricts the accuracy that can be obtained by using smaller step sizes. Finally, we demonstrate that Euler can be computed with identical computational efficiency as EE.

摘要

实时系统经常被用作一种实验工具,通过它模拟模型与神经生理学实验进行实时交互。这些技术中要求最高的是动态钳位,即通过细胞内电极将模拟的离子通道电导人工注入神经元以进行测量和刺激。实时实现门控变量数值积分的方法通常采用一阶数值方法,即欧拉方法或指数欧拉方法(EE)。EE 经常用于快速积分离子通道门控变量。我们通过模拟研究发现,对于小时间步长,两种方法相当,但在较大时间步长时,EE 的表现比欧拉方法差。我们推导了两种方法的误差界限,发现误差可以用两个比率来表征:时间步长与时间常数的比率,以及电压测量误差与电压依赖性门控变量稳态激活曲线斜率因子的比率。这些比率可靠地界定了模拟误差,并产生与模拟分析一致的结果。我们的界限定量地说明了测量误差如何限制通过使用更小步长所能获得的精度。最后,我们证明欧拉方法可以以与 EE 相同的计算效率进行计算。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验