Suppr超能文献

扫视和反扫视过程中动眼神经区域之间的功能相互作用。

Functional interactions between oculomotor regions during prosaccades and antisaccades.

作者信息

Miller Lee M, Sun Felice T, Curtis Clayton E, D'Esposito Mark

机构信息

Section of Neurobiology, Physiology, and Behavior, University of California, Davis, 95616, USA.

出版信息

Hum Brain Mapp. 2005 Oct;26(2):119-27. doi: 10.1002/hbm.20146.

Abstract

Human behavior reflects a continual negotiation of automatic and directed actions. The oculomotor network is a well-characterized neural system in which to study this balance of behavioral control. For instance, saccades made toward and away from a flashed visual stimulus (prosaccades and antisaccades, respectively) are known to engage different cognitive processes. Brain regions important for such controlled execution include the presupplementary motor area (pre-SMA), frontal eye fields (FEF), and intraparietal sulcus (IPS). Recent work has emphasized various elements of this network but has not explored the functional interactions among regions. We used event-related fMRI to image human brain activity during performance of an interleaved pro/antisaccade task. Since traditional univariate statistics cannot address issues of functional connectivity, a multivariate technique is necessary. Coherence between fMRI time series of the pre-SMA with the FEF and IPS was used to measure functional interactions. The FEF, but not IPS, showed significant differential coherence between pro- and antisaccade trials with pre-SMA. These results suggest that the pre-SMA coordinates with FEF to maintain a controlled, preparatory set for task-appropriate oculomotor execution.

摘要

人类行为反映了自动行为和定向行为之间持续的协调。动眼神经网络是一个特征明确的神经系统,可用于研究这种行为控制的平衡。例如,朝向和远离闪烁视觉刺激做出的眼跳(分别为顺向眼跳和逆向眼跳)已知涉及不同的认知过程。对于这种受控执行很重要的脑区包括补充运动前区(pre-SMA)、额叶眼区(FEF)和顶内沟(IPS)。最近的研究强调了该网络的各种要素,但尚未探究各区域之间的功能相互作用。我们使用事件相关功能磁共振成像来对执行交错式顺向/逆向眼跳任务期间的人类大脑活动进行成像。由于传统的单变量统计无法解决功能连接性问题,因此需要一种多变量技术。使用补充运动前区与额叶眼区和顶内沟的功能磁共振成像时间序列之间的相干性来测量功能相互作用。额叶眼区在与补充运动前区的顺向和逆向眼跳试验之间显示出显著的差异相干性,而顶内沟则没有。这些结果表明,补充运动前区与额叶眼区协同作用,为与任务相适应的动眼神经执行维持一种受控的准备状态。

相似文献

1
Functional interactions between oculomotor regions during prosaccades and antisaccades.
Hum Brain Mapp. 2005 Oct;26(2):119-27. doi: 10.1002/hbm.20146.
2
Neural processes associated with antisaccade task performance investigated with event-related FMRI.
J Neurophysiol. 2005 Jul;94(1):429-40. doi: 10.1152/jn.00471.2004. Epub 2005 Feb 23.
3
Frontoparietal activation with preparation for antisaccades.
J Neurophysiol. 2007 Sep;98(3):1751-62. doi: 10.1152/jn.00460.2007. Epub 2007 Jun 27.
4
Positron emission tomography study of voluntary saccadic eye movements and spatial working memory.
J Neurophysiol. 1996 Jan;75(1):454-68. doi: 10.1152/jn.1996.75.1.454.
5
Inhibition and generation of saccades: rapid event-related fMRI of prosaccades, antisaccades, and nogo trials.
Neuroimage. 2006 Nov 1;33(2):644-59. doi: 10.1016/j.neuroimage.2006.07.002. Epub 2006 Sep 1.
6
Visuo-motor integration in humans: cortical patterns of response lateralisation and functional connectivity.
Neuropsychologia. 2009 Apr;47(5):1313-22. doi: 10.1016/j.neuropsychologia.2009.01.027. Epub 2009 Jan 30.
7
Different involvement of subregions within dorsal premotor and medial frontal cortex for pro- and antisaccades.
Neurosci Biobehav Rev. 2016 Sep;68:256-269. doi: 10.1016/j.neubiorev.2016.05.012. Epub 2016 May 19.
9
Guided saccades modulate object and face-specific activity in the fusiform gyrus.
Hum Brain Mapp. 2007 Aug;28(8):691-702. doi: 10.1002/hbm.20301.

引用本文的文献

1
Perturbing human V1 degrades the fidelity of visual working memory.
Nat Commun. 2025 Mar 18;16(1):2675. doi: 10.1038/s41467-025-57882-8.
2
Effector general representation of movement goals in human frontal and parietal cortex.
Neuroimage. 2025 Apr 15;310:121124. doi: 10.1016/j.neuroimage.2025.121124. Epub 2025 Mar 5.
3
Oculomotor differences in adults with and without probable developmental coordination disorder.
Front Hum Neurosci. 2024 Jul 23;18:1280585. doi: 10.3389/fnhum.2024.1280585. eCollection 2024.
4
Neural Substrates of Inhibitory Control Maturation in Adolescence.
Trends Neurosci. 2019 Sep;42(9):604-616. doi: 10.1016/j.tins.2019.07.004. Epub 2019 Aug 20.
5
Cortico-cerebellar network involved in saccade adaptation.
J Neurophysiol. 2018 Nov 1;120(5):2583-2594. doi: 10.1152/jn.00392.2018. Epub 2018 Sep 12.
6
Slowed Prosaccades and Increased Antisaccade Errors As a Potential Behavioral Biomarker of Multiple System Atrophy.
Front Neurol. 2017 Jun 20;8:261. doi: 10.3389/fneur.2017.00261. eCollection 2017.
7
Oculomotor atypicalities in Developmental Coordination Disorder.
Dev Sci. 2018 Jan;21(1). doi: 10.1111/desc.12501. Epub 2016 Oct 17.
8
Different involvement of subregions within dorsal premotor and medial frontal cortex for pro- and antisaccades.
Neurosci Biobehav Rev. 2016 Sep;68:256-269. doi: 10.1016/j.neubiorev.2016.05.012. Epub 2016 May 19.
9
Distinct Roles of the Prefrontal and Posterior Parietal Cortices in Response Inhibition.
Cell Rep. 2016 Mar 29;14(12):2765-73. doi: 10.1016/j.celrep.2016.02.072. Epub 2016 Mar 17.
10
The functional oculomotor network and saccadic cognitive control in healthy elders.
Neuroimage. 2014 Jul 15;95:61-8. doi: 10.1016/j.neuroimage.2014.03.051. Epub 2014 Mar 24.

本文引用的文献

1
Selective averaging of rapidly presented individual trials using fMRI.
Hum Brain Mapp. 1997;5(5):329-40. doi: 10.1002/(SICI)1097-0193(1997)5:5<329::AID-HBM1>3.0.CO;2-5.
2
Supplementary eye field as defined by intracortical microstimulation: connections in macaques.
J Comp Neurol. 1990 Mar 8;293(2):299-330. doi: 10.1002/cne.902930211.
3
Canceling planned action: an FMRI study of countermanding saccades.
Cereb Cortex. 2005 Sep;15(9):1281-9. doi: 10.1093/cercor/bhi011. Epub 2004 Dec 22.
4
Changes in connectivity profiles define functionally distinct regions in human medial frontal cortex.
Proc Natl Acad Sci U S A. 2004 Sep 7;101(36):13335-40. doi: 10.1073/pnas.0403743101. Epub 2004 Aug 30.
5
Maintenance of spatial and motor codes during oculomotor delayed response tasks.
J Neurosci. 2004 Apr 21;24(16):3944-52. doi: 10.1523/JNEUROSCI.5640-03.2004.
6
Measuring interregional functional connectivity using coherence and partial coherence analyses of fMRI data.
Neuroimage. 2004 Feb;21(2):647-58. doi: 10.1016/j.neuroimage.2003.09.056.
7
Look away: the anti-saccade task and the voluntary control of eye movement.
Nat Rev Neurosci. 2004 Mar;5(3):218-28. doi: 10.1038/nrn1345.
8
Success and failure suppressing reflexive behavior.
J Cogn Neurosci. 2003 Apr 1;15(3):409-18. doi: 10.1162/089892903321593126.
10
Human fMRI evidence for the neural correlates of preparatory set.
Nat Neurosci. 2002 Dec;5(12):1345-52. doi: 10.1038/nn969.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验