Suppr超能文献

参与扫视适应的皮质-小脑网络。

Cortico-cerebellar network involved in saccade adaptation.

作者信息

Guillaume Alain, Fuller Jason R, Srimal Riju, Curtis Clayton E

机构信息

CNRS, Laboratoire de Neurosciences Cognitives, Aix Marseille Université , Marseille , France.

Department of Psychology, New York University , New York, New York.

出版信息

J Neurophysiol. 2018 Nov 1;120(5):2583-2594. doi: 10.1152/jn.00392.2018. Epub 2018 Sep 12.

Abstract

Saccade adaptation is the learning process that ensures that vision and saccades remain calibrated. The central nervous system network involved in these adaptive processes remains unclear because of difficulties in isolating the learning process from the correlated visual and motor processes. Here we imaged the human brain during a novel saccade adaptation paradigm that allowed us to isolate neural signals involved in learning independent of the changes in the amplitude of corrective saccades usually correlated with adaptation. We show that the changes in activation in the ipsiversive cerebellar vermis that track adaptation are not driven by the changes in corrective saccades and thus provide critical supporting evidence for previous findings. Similarly, we find that activation in the dorsomedial wall of the contraversive precuneus mirrors the pattern found in the cerebellum. Finally, we identify dorsolateral and dorsomedial cortical areas in the frontal and parietal lobes that encode the retinal errors following inaccurate saccades used to drive recalibration. Together, these data identify a distributed network of cerebellar and cortical areas and their specific roles in oculomotor learning. NEW & NOTEWORTHY The central nervous system constantly learns from errors and adapts to keep visual targets and saccades in registration. We imaged the human brain while the gain of saccades adapted to a visual target that was displaced while the eye was in motion, inducing retinal error. Activity in the cerebellum and precuneus tracked learning, whereas parts of the dorsolateral and dorsomedial frontal and parietal cortex encoded the retinal error used to drive learning.

摘要

扫视适应是一种学习过程,可确保视觉和扫视保持校准。由于难以将学习过程与相关的视觉和运动过程分离,参与这些适应性过程的中枢神经系统网络仍不清楚。在这里,我们在一种新颖的扫视适应范式中对人类大脑进行成像,该范式使我们能够分离出参与学习的神经信号,而不受通常与适应相关的校正扫视幅度变化的影响。我们表明,追踪适应的同侧小脑蚓部激活变化并非由校正扫视的变化驱动,从而为先前的发现提供了关键的支持证据。同样,我们发现对侧楔前叶背内侧壁的激活反映了小脑中发现的模式。最后,我们确定了额叶和顶叶中的背外侧和背内侧皮质区域,这些区域编码了用于驱动重新校准的不准确扫视后的视网膜误差。这些数据共同确定了一个由小脑和皮质区域组成的分布式网络及其在眼球运动学习中的特定作用。新发现与值得注意的是,中枢神经系统不断从错误中学习并进行适应,以保持视觉目标和扫视的对准。我们在扫视增益适应于视觉目标时对人类大脑进行成像,该视觉目标在眼睛运动时发生位移,从而诱发视网膜误差。小脑中的活动和楔前叶追踪学习,而背外侧和背内侧额叶及顶叶皮质的部分区域则编码用于驱动学习的视网膜误差。

相似文献

1
Cortico-cerebellar network involved in saccade adaptation.
J Neurophysiol. 2018 Nov 1;120(5):2583-2594. doi: 10.1152/jn.00392.2018. Epub 2018 Sep 12.
3
Complex spike activity in the oculomotor vermis of the cerebellum: a vectorial error signal for saccade motor learning?
J Neurophysiol. 2008 Oct;100(4):1949-66. doi: 10.1152/jn.90526.2008. Epub 2008 Jul 23.
4
Effects of lesions of the oculomotor vermis on eye movements in primate: saccades.
J Neurophysiol. 1998 Oct;80(4):1911-31. doi: 10.1152/jn.1998.80.4.1911.
5
How cerebellar motor learning keeps saccades accurate.
J Neurophysiol. 2019 Jun 1;121(6):2153-2162. doi: 10.1152/jn.00781.2018. Epub 2019 Apr 17.
6
Cerebellar influences on saccade plasticity.
Ann N Y Acad Sci. 2002 Apr;956:155-63. doi: 10.1111/j.1749-6632.2002.tb02816.x.
7
Complex spike activity of purkinje cells in the oculomotor vermis during behavioral adaptation of monkey saccades.
J Neurosci. 2006 Jul 19;26(29):7741-55. doi: 10.1523/JNEUROSCI.4658-05.2006.
8
Premotor inhibitory neurons carry signals related to saccade adaptation in the monkey.
J Neurophysiol. 2008 Jan;99(1):220-30. doi: 10.1152/jn.00554.2007. Epub 2007 Oct 31.
9
Neural substrates of saccadic adaptation: Plastic changes versus error processing and forward versus backward learning.
Neuroimage. 2022 Nov 15;262:119556. doi: 10.1016/j.neuroimage.2022.119556. Epub 2022 Aug 12.
10
Effect of inactivation and disinhibition of the oculomotor vermis on saccade adaptation.
Brain Res. 2011 Jul 15;1401:30-9. doi: 10.1016/j.brainres.2011.05.027. Epub 2011 May 19.

引用本文的文献

1
Adaptation across the 2D population code explains the spatially distributive nature of motor learning.
PLoS Comput Biol. 2025 Jun 4;21(6):e1013041. doi: 10.1371/journal.pcbi.1013041. eCollection 2025 Jun.
2
A triple distinction of cerebellar function for oculomotor learning and fatigue compensation.
PLoS Comput Biol. 2023 Aug 4;19(8):e1011322. doi: 10.1371/journal.pcbi.1011322. eCollection 2023 Aug.
3
Visuomotor learning from postdictive motor error.
Elife. 2021 Mar 9;10:e64278. doi: 10.7554/eLife.64278.
4
Reduced Global-Brain Functional Connectivity of the Cerebello-Thalamo-Cortical Network in Patients With Dry Eye Disease.
Front Hum Neurosci. 2020 Sep 25;14:572693. doi: 10.3389/fnhum.2020.572693. eCollection 2020.
6
Reactive saccade adaptation boosts orienting of visuospatial attention.
Sci Rep. 2020 Aug 10;10(1):13430. doi: 10.1038/s41598-020-70120-z.
7
Saccadic adaptation shapes perceived size: Common codes for action and perception.
Atten Percept Psychophys. 2020 Oct;82(7):3676-3685. doi: 10.3758/s13414-020-02102-2.
9
Guidelines for Treatment and Monitoring of Adult Survivors of Pediatric Brain Tumors.
Curr Treat Options Oncol. 2019 Feb 9;20(1):10. doi: 10.1007/s11864-019-0602-0.

本文引用的文献

1
The Cerebellum: Adaptive Prediction for Movement and Cognition.
Trends Cogn Sci. 2017 May;21(5):313-332. doi: 10.1016/j.tics.2017.02.005. Epub 2017 Apr 3.
2
Climbing Fibers Control Purkinje Cell Representations of Behavior.
J Neurosci. 2017 Feb 22;37(8):1997-2009. doi: 10.1523/JNEUROSCI.3163-16.2017. Epub 2017 Jan 11.
3
Error Signals in Motor Cortices Drive Adaptation in Reaching.
Neuron. 2016 Jun 1;90(5):1114-26. doi: 10.1016/j.neuron.2016.04.029. Epub 2016 May 12.
4
Computations underlying sensorimotor learning.
Curr Opin Neurobiol. 2016 Apr;37:7-11. doi: 10.1016/j.conb.2015.12.003. Epub 2015 Dec 23.
5
The Errors of Our Ways: Understanding Error Representations in Cerebellar-Dependent Motor Learning.
Cerebellum. 2016 Apr;15(2):93-103. doi: 10.1007/s12311-015-0685-5.
6
Effects of structural and functional cerebellar lesions on sensorimotor adaptation of saccades.
Exp Brain Res. 2013 Nov;231(1):1-11. doi: 10.1007/s00221-013-3662-6. Epub 2013 Aug 21.
7
Revisiting corrective saccades: role of visual feedback.
Vision Res. 2013 Aug 30;89:54-64. doi: 10.1016/j.visres.2013.07.012. Epub 2013 Jul 24.
8
Saccade adaptation as a model of flexible and general motor learning.
Exp Eye Res. 2013 Sep;114:6-15. doi: 10.1016/j.exer.2013.04.001. Epub 2013 Apr 15.
9
Model-based and model-free mechanisms of human motor learning.
Adv Exp Med Biol. 2013;782:1-21. doi: 10.1007/978-1-4614-5465-6_1.
10
Cerebellar activation related to saccadic inaccuracies.
Cerebellum. 2013 Apr;12(2):224-35. doi: 10.1007/s12311-012-0417-z.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验