Suppr超能文献

从靶点到先导化合物:高级数据分析在药物发现决策支持中的重要性。

From targets to leads: the importance of advanced data analysis for decision support in drug discovery.

作者信息

Fischer Hans Peter, Heyse Stephan

机构信息

Genedata AG, Postfach 254, Basel, CH-4016 Switzerland Em ail: stephan.heyse O genedata.com.

出版信息

Curr Opin Drug Discov Devel. 2005 May;8(3):334-46.

Abstract

Lead discovery is a complex process that is intimately linked to chemistry, but which is also increasingly driven by biological sciences. In an industrial pharmaceutical research environment the process is defined by highly automated technologies for target identification and validation, compound library screening, and compound efficacy assessment. The huge volumes and complex dependencies of data produced by such large-scale experiments have led to a reassessment of data analysis processes, resulting in the development of novel data analysis strategies tailored to drug discovery. In this review, recent progress in data-driven research applications is reported, focusing on the use and processing of transcriptomics, proteomics and high-throughput screening data. The successful application of specialized data analysis procedures in many companies is discussed, which has resulted in significant improvements in decision-making processes for progressing therapeutic targets to promising leads.

摘要

先导化合物发现是一个复杂的过程,它与化学密切相关,但也越来越受到生物科学的推动。在工业制药研究环境中,该过程由用于靶点识别与验证、化合物库筛选及化合物疗效评估的高度自动化技术所定义。此类大规模实验产生的数据量巨大且依赖性复杂,这导致了对数据分析过程的重新评估,进而催生了针对药物发现量身定制的新型数据分析策略。在本综述中,报告了数据驱动研究应用的最新进展,重点关注转录组学、蛋白质组学和高通量筛选数据的使用与处理。讨论了专门数据分析程序在许多公司的成功应用,这使得将治疗靶点推进到有前景的先导化合物的决策过程有了显著改进。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验