Podust Larissa M, von Kries Jens P, Eddine Ali Nasser, Kim Youngchang, Yermalitskaya Liudmila V, Kuehne Ronald, Ouellet Hugues, Warrier Thulasi, Alteköster Markus, Lee Jong-Seok, Rademann Jörg, Oschkinat Hartmut, Kaufmann Stefan H E, Waterman Michael R
Department of Pharmaceutical Chemistry, University of California, 600 16th St., San Francisco, CA 94158, USA.
Antimicrob Agents Chemother. 2007 Nov;51(11):3915-23. doi: 10.1128/AAC.00311-07. Epub 2007 Sep 10.
Sterol 14alpha-demethylase (CYP51), a major checkpoint in membrane sterol biosynthesis, is a key target for fungal antibiotic therapy. We sought small organic molecules for lead candidate CYP51 inhibitors. The changes in CYP51 spectral properties following ligand binding make CYP51 a convenient target for high-throughput screening technologies. These changes are characteristic of either substrate binding (type I) or inhibitor binding (type II) in the active site. We screened a library of 20,000 organic molecules against Mycobacterium tuberculosis CYP51 (CYP51(Mt)), examined the top type I and type II binding hits for their inhibitory effects on M. tuberculosis in broth culture, and analyzed them spectrally for their ability to discriminate between CYP51(Mt) and two reference M. tuberculosis CYP proteins, CYP130 and CYP125. We determined the binding mode for one of the top type II hits, alpha-ethyl-N-4-pyridinyl-benzeneacetamide (EPBA), by solving the X-ray structure of the CYP51(Mt)-EPBA complex to a resolution of 1.53 A. EPBA binds coordinately to the heme iron in the CYP51(Mt) active site through a lone pair of nitrogen electrons and also through hydrogen bonds with residues H259 and Y76, which are invariable in the CYP51 family, and hydrophobic interactions in a phylum- and/or substrate-specific cavity of CYP51. We also identified a second compound with structural and binding properties similar to those of EPBA, 2-(benzo[d]-2,1,3-thiadiazole-4-sulfonyl)-2-amino-2-phenyl-N-(pyridinyl-4)-acetamide (BSPPA). The congruence between the geometries of EPBA and BSPPA and the CYP51 binding site singles out EPBA and BSPPA as lead candidate CYP51 inhibitors with optimization potential for efficient discrimination between host and pathogen enzymes.
甾醇14α-脱甲基酶(CYP51)是膜甾醇生物合成中的一个主要关卡,是真菌抗生素治疗的关键靶点。我们寻找用于先导候选CYP51抑制剂的小分子。配体结合后CYP51光谱特性的变化使CYP51成为高通量筛选技术的便利靶点。这些变化是活性位点中底物结合(I型)或抑制剂结合(II型)的特征。我们针对结核分枝杆菌CYP51(CYP51(Mt))筛选了一个包含20000个有机分子的文库,检测了顶级I型和II型结合命中物对肉汤培养中结核分枝杆菌的抑制作用,并对它们进行光谱分析,以确定其区分CYP51(Mt)与两种参考结核分枝杆菌CYP蛋白CYP130和CYP125的能力。通过解析CYP51(Mt)-EPBA复合物的X射线结构至1.53 Å的分辨率,我们确定了顶级II型命中物之一α-乙基-N-4-吡啶基苯乙酰胺(EPBA)的结合模式。EPBA通过一对孤对氮电子与CYP51(Mt)活性位点中的血红素铁配位结合,还通过与CYP51家族中不变的残基H259和Y76形成氢键以及在CYP51的门和/或底物特异性腔中的疏水相互作用结合。我们还鉴定出了第二种化合物,2-(苯并[d]-2,1,3-噻二唑-4-磺酰基)-2-氨基-2-苯基-N-(吡啶基-4)-乙酰胺(BSPPA),其结构和结合特性与EPBA相似。EPBA和BSPPA的几何结构与CYP51结合位点之间的一致性使EPBA和BSPPA成为具有优化潜力的先导候选CYP51抑制剂,可有效区分宿主和病原体酶。