Suppr超能文献

一种用于3D医学图像分割的混合框架。

A hybrid framework for 3D medical image segmentation.

作者信息

Chen Ting, Metaxas Dimitris

机构信息

CBIM Center, Rutgers University, Piscataway, NJ 08854, USA.

出版信息

Med Image Anal. 2005 Dec;9(6):547-65. doi: 10.1016/j.media.2005.04.004.

Abstract

In this paper we propose a novel hybrid 3D segmentation framework which combines Gibbs models, marching cubes and deformable models. In the framework, first we construct a new Gibbs model whose energy function is defined on a high order clique system. The new model includes both region and boundary information during segmentation. Next we improve the original marching cubes method to construct 3D meshes from Gibbs models' output. The 3D mesh serves as the initial geometry of the deformable model. Then we deform the deformable model using external image forces so that the model converges to the object surface. We run the Gibbs model and the deformable model recursively by updating the Gibbs model's parameters using the region and boundary information in the deformable model segmentation result. In our approach, the hybrid combination of region-based methods and boundary-based methods results in improved segmentations of complex structures. The benefit of the methodology is that it produces high quality segmentations of 3D structures using little prior information and minimal user intervention. The modules in this segmentation methodology are developed within the context of the Insight ToolKit (ITK). We present experimental segmentation results of brain tumors and evaluate our method by comparing experimental results with expert manual segmentations. The evaluation results show that the methodology achieves high quality segmentation results with computational efficiency. We also present segmentation results of other clinical objects to illustrate the strength of the methodology as a generic segmentation framework.

摘要

在本文中,我们提出了一种新颖的混合三维分割框架,该框架结合了吉布斯模型、移动立方体算法和可变形模型。在该框架中,首先我们构建一个新的吉布斯模型,其能量函数定义在一个高阶团系统上。新模型在分割过程中同时包含区域和边界信息。接下来,我们改进原始的移动立方体方法,以便从吉布斯模型的输出构建三维网格。该三维网格作为可变形模型的初始几何形状。然后,我们使用外部图像力使可变形模型变形,从而使模型收敛到物体表面。我们通过使用可变形模型分割结果中的区域和边界信息更新吉布斯模型的参数,来递归运行吉布斯模型和可变形模型。在我们的方法中,基于区域的方法和基于边界的方法的混合组合导致了复杂结构分割的改进。该方法的优点是,它使用很少的先验信息和最少的用户干预就能生成高质量的三维结构分割。这种分割方法中的模块是在洞察工具包(ITK)的背景下开发的。我们展示了脑肿瘤的实验分割结果,并通过将实验结果与专家手动分割结果进行比较来评估我们的方法。评估结果表明,该方法在计算效率方面取得了高质量的分割结果。我们还展示了其他临床对象的分割结果,以说明该方法作为通用分割框架的优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验