School of Engineering and Computer Science, The Hebrew University of Jerusalem, Jerusalem, Israel.
Int J Comput Assist Radiol Surg. 2011 Mar;6(2):247-55. doi: 10.1007/s11548-010-0497-5. Epub 2010 Jun 24.
OBJECTIVE: We present a method and a validation study for the nearly automatic segmentation of liver tumors in CTA scans. MATERIALS AND METHODS: Our method inputs a liver CTA scan and a small number of user-defined seeds. It first classifies the liver voxels into tumor and healthy tissue classes with an SVM classification engine from which a new set of high- quality seeds is generated. Next, an energy function describing the propagation of these seeds is defined over the 3D image. The functional consists of a set of linear equations that are optimized with the conjugate gradients method. The result is a continuous segmentation map that is thresholded to obtain a binary segmentation. RESULTS: A retrospective study on a validated clinical dataset consisting of 20 tumors from nine patients' CTA scans from the MICCAI'08 3D Liver Tumors Segmentation Challenge Workshop yielded an average aggregate score of 67, an average symmetric surface distance of 1.76 mm (SD = 0.61 mm) which is better than the 2.0 mm of other methods on the same database, and a comparable volumetric overlap error (33.8 vs. 32.6%). The advantage of our method is that it requires less user interaction compared to other methods. CONCLUSION: Our results indicate that our method is accurate, efficient, and robust to wide variety of tumor types and is comparable or superior to other semi-automatic segmentation methods, with much less user interaction.
目的:我们提出了一种在 CTA 扫描中自动分割肝肿瘤的方法和验证研究。
材料和方法:我们的方法输入肝脏 CTA 扫描和少量用户定义的种子。它首先使用 SVM 分类引擎将肝脏体素分类为肿瘤和健康组织类,从中生成一组新的高质量种子。接下来,定义一个能量函数来描述这些种子在 3D 图像中的传播。该函数由一组线性方程组成,通过共轭梯度法进行优化。结果是一个连续的分割图,通过阈值处理得到二进制分割。
结果:对来自 MICCAI'08 3D 肝脏肿瘤分割挑战赛研讨会的 9 名患者的 20 个肿瘤的验证临床数据集进行的回顾性研究,得出的平均综合得分为 67,平均对称表面距离为 1.76mm(SD=0.61mm),优于其他方法在同一数据库中的 2.0mm,以及可比的体积重叠误差(33.8 比 32.6%)。与其他方法相比,我们的方法的优势在于它需要更少的用户交互。
结论:我们的结果表明,我们的方法准确、高效、对各种类型的肿瘤具有鲁棒性,并且与其他半自动分割方法相当或更优,用户交互更少。
Int J Comput Assist Radiol Surg. 2010-6-24
Med Image Comput Comput Assist Interv. 2008
Comput Med Imaging Graph. 2015-7
Annu Int Conf IEEE Eng Med Biol Soc. 2011
Med Image Comput Comput Assist Interv. 2006
J Digit Imaging. 2020-4
Int J Comput Assist Radiol Surg. 2019-4-30
Int J Comput Assist Radiol Surg. 2018-6-2
Med Biol Eng Comput. 2017-10-16
Med Image Anal. 2017-1-13
Int J Comput Assist Radiol Surg. 2016-7
Sci Rep. 2015-10-20
J Natl Cancer Inst. 2006-9-20
Med Image Anal. 2005-12
J Vasc Interv Radiol. 2003-9