文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于体素分类和亲和约束传播的 CTA 图像肝脏肿瘤分割。

Liver tumors segmentation from CTA images using voxels classification and affinity constraint propagation.

机构信息

School of Engineering and Computer Science, The Hebrew University of Jerusalem, Jerusalem, Israel.

出版信息

Int J Comput Assist Radiol Surg. 2011 Mar;6(2):247-55. doi: 10.1007/s11548-010-0497-5. Epub 2010 Jun 24.


DOI:10.1007/s11548-010-0497-5
PMID:20574799
Abstract

OBJECTIVE: We present a method and a validation study for the nearly automatic segmentation of liver tumors in CTA scans. MATERIALS AND METHODS: Our method inputs a liver CTA scan and a small number of user-defined seeds. It first classifies the liver voxels into tumor and healthy tissue classes with an SVM classification engine from which a new set of high- quality seeds is generated. Next, an energy function describing the propagation of these seeds is defined over the 3D image. The functional consists of a set of linear equations that are optimized with the conjugate gradients method. The result is a continuous segmentation map that is thresholded to obtain a binary segmentation. RESULTS: A retrospective study on a validated clinical dataset consisting of 20 tumors from nine patients' CTA scans from the MICCAI'08 3D Liver Tumors Segmentation Challenge Workshop yielded an average aggregate score of 67, an average symmetric surface distance of 1.76 mm (SD = 0.61 mm) which is better than the 2.0 mm of other methods on the same database, and a comparable volumetric overlap error (33.8 vs. 32.6%). The advantage of our method is that it requires less user interaction compared to other methods. CONCLUSION: Our results indicate that our method is accurate, efficient, and robust to wide variety of tumor types and is comparable or superior to other semi-automatic segmentation methods, with much less user interaction.

摘要

目的:我们提出了一种在 CTA 扫描中自动分割肝肿瘤的方法和验证研究。

材料和方法:我们的方法输入肝脏 CTA 扫描和少量用户定义的种子。它首先使用 SVM 分类引擎将肝脏体素分类为肿瘤和健康组织类,从中生成一组新的高质量种子。接下来,定义一个能量函数来描述这些种子在 3D 图像中的传播。该函数由一组线性方程组成,通过共轭梯度法进行优化。结果是一个连续的分割图,通过阈值处理得到二进制分割。

结果:对来自 MICCAI'08 3D 肝脏肿瘤分割挑战赛研讨会的 9 名患者的 20 个肿瘤的验证临床数据集进行的回顾性研究,得出的平均综合得分为 67,平均对称表面距离为 1.76mm(SD=0.61mm),优于其他方法在同一数据库中的 2.0mm,以及可比的体积重叠误差(33.8 比 32.6%)。与其他方法相比,我们的方法的优势在于它需要更少的用户交互。

结论:我们的结果表明,我们的方法准确、高效、对各种类型的肿瘤具有鲁棒性,并且与其他半自动分割方法相当或更优,用户交互更少。

相似文献

[1]
Liver tumors segmentation from CTA images using voxels classification and affinity constraint propagation.

Int J Comput Assist Radiol Surg. 2010-6-24

[2]
A bayesian approach for liver analysis: algorithm and validation study.

Med Image Comput Comput Assist Interv. 2008

[3]
Semi-automatic level set segmentation of liver tumors combining a spiral-scanning technique with supervised fuzzy pixel classification.

Med Image Anal. 2009-9-19

[4]
Semi-automatic liver tumor segmentation with hidden Markov measure field model and non-parametric distribution estimation.

Med Image Anal. 2011-6-24

[5]
Iterative mesh transformation for 3D segmentation of livers with cancers in CT images.

Comput Med Imaging Graph. 2015-7

[6]
Interactive liver tumor segmentation from ct scans using support vector classification with watershed.

Annu Int Conf IEEE Eng Med Biol Soc. 2011

[7]
A new fully automatic and robust algorithm for fast segmentation of liver tissue and tumors from CT scans.

Eur Radiol. 2008-8

[8]
Semiautomatic segmentation of liver metastases on volumetric CT images.

Med Phys. 2015-11

[9]
Fast and robust semi-automatic liver segmentation with haptic interaction.

Med Image Comput Comput Assist Interv. 2006

[10]
Blood vessel-based liver segmentation using the portal phase of an abdominal CT dataset.

Med Phys. 2013-11

引用本文的文献

[1]
Survey on Liver Tumour Resection Planning System: Steps, Techniques, and Parameters.

J Digit Imaging. 2020-4

[2]
Liver tissue segmentation in multiphase CT scans using cascaded convolutional neural networks.

Int J Comput Assist Radiol Surg. 2019-4-30

[3]
An automated liver tumour segmentation from abdominal CT scans for hepatic surgical planning.

Int J Comput Assist Radiol Surg. 2018-6-2

[4]
Patient-specific and global convolutional neural networks for robust automatic liver tumor delineation in follow-up CT studies.

Med Biol Eng Comput. 2018-3-10

[5]
Novel Mahalanobis-based feature selection improves one-class classification of early hepatocellular carcinoma.

Med Biol Eng Comput. 2017-10-16

[6]
Adaptive local window for level set segmentation of CT and MRI liver lesions.

Med Image Anal. 2017-1-13

[7]
Liver Tumor Segmentation from MR Images Using 3D Fast Marching Algorithm and Single Hidden Layer Feedforward Neural Network.

Biomed Res Int. 2016

[8]
Automatic liver tumor segmentation on computed tomography for patient treatment planning and monitoring.

EXCLI J. 2016-6-27

[9]
Improved segmentation of low-contrast lesions using sigmoid edge model.

Int J Comput Assist Radiol Surg. 2016-7

[10]
Interactive Volumetry Of Liver Ablation Zones.

Sci Rep. 2015-10-20

本文引用的文献

[1]
Semi-automatic level set segmentation of liver tumors combining a spiral-scanning technique with supervised fuzzy pixel classification.

Med Image Anal. 2009-9-19

[2]
New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1).

Eur J Cancer. 2009-1

[3]
Sometimes size doesn't matter: reevaluating RECIST and tumor response rate endpoints.

J Natl Cancer Inst. 2006-9-20

[4]
Inadequacy of manual measurements compared to automated CT volumetry in assessment of treatment response of pulmonary metastases using RECIST criteria.

Eur Radiol. 2006-4

[5]
A hybrid framework for 3D medical image segmentation.

Med Image Anal. 2005-12

[6]
Comparison of treatment response classifications between unidimensional, bidimensional, and volumetric measurements of metastatic lung lesions on chest computed tomography.

Acad Radiol. 2004-12

[7]
Reporting standards for uterine artery embolization for the treatment of uterine leiomyomata.

J Vasc Interv Radiol. 2003-9

[8]
Fully automatic anatomical, pathological, and functional segmentation from CT scans for hepatic surgery.

Comput Aided Surg. 2001

[9]
Automatic liver segmentation technique for three-dimensional visualization of CT data.

Radiology. 1996-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索