Suppr超能文献

神经肿瘤学中的影像学

Imaging in neurooncology.

作者信息

Jacobs Andreas H, Kracht Lutz W, Gossmann Axel, Rüger Maria A, Thomas Anne V, Thiel Alexander, Herholz Karl

机构信息

Max Planck-Institute for Neurological Research, Cologne, Germany.

出版信息

NeuroRx. 2005 Apr;2(2):333-47. doi: 10.1602/neurorx.2.2.333.

Abstract

Imaging in patients with brain tumors aims toward the determination of the localization, extend, type, and malignancy of the tumor. Imaging is being used for primary diagnosis, planning of treatment including placement of stereotaxic biopsy, resection, radiation, guided application of experimental therapeutics, and delineation of tumor from functionally important neuronal tissue. After treatment, imaging is being used to quantify the treatment response and the extent of residual tumor. At follow-up, imaging helps to determine tumor progression and to differentiate recurrent tumor growth from treatment-induced tissue changes, such as radiation necrosis. A variety of complementary imaging methods are currently being used to obtain all the information necessary to achieve the above mentioned goals. Computed tomography and magnetic resonance imaging (MRI) reveal mostly anatomical information on the tumor, whereas magnetic resonance spectroscopy and positron emission tomography (PET) give important information on the metabolic state and molecular events within the tumor. Functional MRI and functional PET, in combination with electrophysiological methods like transcranial magnetic stimulation, are being used to delineate functionally important neuronal tissue, which has to be preserved from treatment-induced damage, as well as to gather information on tumor-induced brain plasticity. In addition, optical imaging devices have been implemented in the past few years for the development of new therapeutics, especially in experimental glioma models. In summary, imaging in patients with brain tumors plays a central role in the management of the disease and in the development of improved imaging-guided therapies.

摘要

脑肿瘤患者的成像旨在确定肿瘤的定位、范围、类型和恶性程度。成像用于初步诊断、治疗方案规划,包括立体定向活检的放置、切除、放疗、实验性治疗的引导应用以及区分肿瘤与功能重要的神经组织。治疗后,成像用于量化治疗反应和残余肿瘤的范围。在随访中,成像有助于确定肿瘤进展,并区分复发性肿瘤生长与治疗引起的组织变化,如放射性坏死。目前正在使用多种互补的成像方法来获取实现上述目标所需的所有信息。计算机断层扫描和磁共振成像(MRI)主要揭示肿瘤的解剖学信息,而磁共振波谱和正电子发射断层扫描(PET)则提供肿瘤内代谢状态和分子事件的重要信息。功能MRI和功能PET与经颅磁刺激等电生理方法相结合,用于区分功能重要的神经组织,这些组织必须免受治疗引起的损伤,同时收集有关肿瘤诱导的脑可塑性的信息。此外,在过去几年中,光学成像设备已用于新型治疗方法的开发,尤其是在实验性胶质瘤模型中。总之,脑肿瘤患者的成像在疾病管理和改进成像引导治疗的开发中起着核心作用。

相似文献

1
Imaging in neurooncology.
NeuroRx. 2005 Apr;2(2):333-47. doi: 10.1602/neurorx.2.2.333.
2
[Use of amino acid PET in the Diagnostic and Treatment Management of cerebral gliomas].
Fortschr Neurol Psychiatr. 2012 Jan;80(1):17-23. doi: 10.1055/s-0031-1281851. Epub 2011 Dec 12.
4
Positron emission tomography for radiation treatment planning.
Strahlenther Onkol. 2005 Aug;181(8):483-99. doi: 10.1007/s00066-005-1422-7.
5
Metabolic approach for tumor delineation in glioma surgery: 3D MR spectroscopy image-guided resection.
J Neurosurg. 2016 Jun;124(6):1585-93. doi: 10.3171/2015.6.JNS142651. Epub 2015 Dec 4.
7
[Neuroimaging in brain tumors].
Rev Esp Med Nucl. 2011 Jan-Feb;30(1):47-65. doi: 10.1016/j.remn.2010.11.001. Epub 2011 Jan 5.
8
Biopsy targeting gliomas: do functional imaging techniques identify similar target areas?
Invest Radiol. 2010 Dec;45(12):755-68. doi: 10.1097/RLI.0b013e3181ec9db0.
9
Intraoperative MRI for interventional neurosurgical procedures and tumor resection control in children.
Childs Nerv Syst. 2006 Jul;22(7):674-8. doi: 10.1007/s00381-005-0030-2. Epub 2006 Feb 1.
10
Molecular and functional imaging technology for the development of efficient treatment strategies for gliomas.
Technol Cancer Res Treat. 2002 Jun;1(3):187-204. doi: 10.1177/153303460200100304.

引用本文的文献

1
MRS Imaging as Complement to MRI in the Post-treatment Follow-up of Glial Brain Tumors.
Cancer Diagn Progn. 2025 Sep 1;5(5):625-633. doi: 10.21873/cdp.10478. eCollection 2025 Sep-Oct.
2
Metallic Nanoparticles Applications in Neurological Disorders: A Review.
Int J Biomater. 2025 Jul 6;2025:4557622. doi: 10.1155/ijbm/4557622. eCollection 2025.
5
The great mimicker of dural pathology: primary dural diffuse large B-cell lymphoma.
Wien Klin Wochenschr. 2023 Sep;135(17-18):496-498. doi: 10.1007/s00508-023-02190-8. Epub 2023 Apr 17.
6
Molecular MRI-Based Monitoring of Cancer Immunotherapy Treatment Response.
Int J Mol Sci. 2023 Feb 5;24(4):3151. doi: 10.3390/ijms24043151.
7
MRI-compatible electromagnetic servomotor for image-guided medical robotics.
Commun Eng. 2022;1. doi: 10.1038/s44172-022-00001-y. Epub 2022 May 26.
8
Intracranial Solitary Fibrous Tumor: A "New" Challenge for PET Radiopharmaceuticals.
J Clin Med. 2022 Aug 14;11(16):4746. doi: 10.3390/jcm11164746.
9
A Systematic Review of the Current Status and Quality of Radiomics for Glioma Differential Diagnosis.
Cancers (Basel). 2022 May 31;14(11):2731. doi: 10.3390/cancers14112731.
10
Construction and imaging of a neurovascular unit model.
Neural Regen Res. 2022 Aug;17(8):1685-1694. doi: 10.4103/1673-5374.332131.

本文引用的文献

1
Essential language function of the right hemisphere in brain tumor patients.
Ann Neurol. 2005 Jan;57(1):128-31. doi: 10.1002/ana.20342.
7
Effects of dexamethasone on peritumoural oedematous brain: a DT-MRI study.
J Neurol Neurosurg Psychiatry. 2004 Nov;75(11):1632-5. doi: 10.1136/jnnp.2003.028647.
9
A preclinical model for noninvasive imaging of hypoxia-induced gene expression; comparison with an exogenous marker of tumor hypoxia.
Eur J Nucl Med Mol Imaging. 2004 Nov;31(11):1530-8. doi: 10.1007/s00259-004-1673-z. Epub 2004 Sep 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验