Suppr超能文献

细胞增殖特征是乳腺癌患者亚群中预后极差的一个标志物。

A cell proliferation signature is a marker of extremely poor outcome in a subpopulation of breast cancer patients.

作者信息

Dai Hongyue, van't Veer Laura, Lamb John, He Yudong D, Mao Mao, Fine Bernard M, Bernards Rene, van de Vijver Marc, Deutsch Paul, Sachs Alan, Stoughton Roland, Friend Stephen

机构信息

Rosetta Inpharmatics LLC, (A wholly owned subsidiary of Merck & Co. Inc.) Seattle, Washington, USA.

出版信息

Cancer Res. 2005 May 15;65(10):4059-66. doi: 10.1158/0008-5472.CAN-04-3953.

Abstract

Breast cancer comprises a group of distinct subtypes that despite having similar histologic appearances, have very different metastatic potentials. Being able to identify the biological driving force, even for a subset of patients, is crucially important given the large population of women diagnosed with breast cancer. Here, we show that within a subset of patients characterized by relatively high estrogen receptor expression for their age, the occurrence of metastases is strongly predicted by a homogeneous gene expression pattern almost entirely consisting of cell cycle genes (5-year odds ratio of metastasis, 24.0; 95% confidence interval, 6.0-95.5). Overexpression of this set of genes is clearly associated with an extremely poor outcome, with the 10-year metastasis-free probability being only 24% for the poor group, compared with 85% for the good group. In contrast, this gene expression pattern is much less correlated with the outcome in other patient subpopulations. The methods described here also illustrate the value of combining clinical variables, biological insight, and machine-learning to dissect biological complexity. Our work presented here may contribute a crucial step towards rational design of personalized treatment.

摘要

乳腺癌由一组不同的亚型组成,这些亚型尽管具有相似的组织学外观,但转移潜能却大不相同。鉴于大量女性被诊断患有乳腺癌,能够确定生物学驱动因素,即使只是针对一部分患者,也至关重要。在这里,我们表明,在一组因年龄相对较高的雌激素受体表达而具有特征的患者中,几乎完全由细胞周期基因组成的同质基因表达模式强烈预测转移的发生(转移的5年优势比为24.0;95%置信区间为6.0 - 95.5)。这组基因的过表达显然与极其不良的预后相关,不良组的10年无转移概率仅为24%,而良好组为85%。相比之下,这种基因表达模式与其他患者亚群的预后相关性要小得多。这里描述的方法还说明了结合临床变量、生物学见解和机器学习来剖析生物学复杂性的价值。我们在此展示的工作可能为个性化治疗的合理设计迈出关键一步。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验