Suppr超能文献

基于人群的连续优化、概率建模与均值漂移。

Population-based continuous optimization, probabilistic modelling and mean shift.

作者信息

Gallagher Marcus, Frean Marcus

机构信息

School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, QLD 4072, Australia.

出版信息

Evol Comput. 2005 Spring;13(1):29-42. doi: 10.1162/1063656053583478.

Abstract

Evolutionary algorithms perform optimization using a population of sample solution points. An interesting development has been to view population-based optimization as the process of evolving an explicit, probabilistic model of the search space. This paper investigates a formal basis for continuous, population-based optimization in terms of a stochastic gradient descent on the Kullback-Leibler divergence between the model probability density and the objective function, represented as an unknown density of assumed form. This leads to an update rule that is related and compared with previous theoretical work, a continuous version of the population-based incremental learning algorithm, and the generalized mean shift clustering framework. Experimental results are presented that demonstrate the dynamics of the new algorithm on a set of simple test problems.

摘要

进化算法通过一组样本解点来执行优化。一个有趣的进展是将基于种群的优化视为对搜索空间演化出一个显式概率模型的过程。本文从模型概率密度与目标函数(表示为假定形式的未知密度)之间的库尔贝克-莱布勒散度的随机梯度下降的角度,研究了连续的、基于种群的优化的形式基础。这引出了一个更新规则,该规则与先前的理论工作相关并进行了比较,是基于种群的增量学习算法的连续版本,以及广义均值漂移聚类框架。给出的实验结果展示了新算法在一组简单测试问题上的动态特性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验