Mechulam Alain, Cerutti Martine, Pugnière Martine, Missé Dorothée, Gajardo Johanna, Roquet Françoise, Robinson James, Veas Francisco
Laboratoire d'Immunologie Rétrovirale et Moléculaire, Institut Français de Recherches pour le Développement (IRD), UR 034, 240 Av. Emile Jeanbrau, Etablissement Français du Sang, 34094, Montpellier, France.
J Mol Med (Berl). 2005 Jul;83(7):542-52. doi: 10.1007/s00109-005-0673-1. Epub 2005 May 19.
Whereas gp120 CD4-induced structures have been largely documented and at least in part elucidated by crystallization, information about gp120 coreceptor-induced structures remains incomplete despite numerous studies. In this work, mutations were carried out in a selected internal region of HIV-1/YU2 gp120, proximal to the CD4-binding site, because of its highly conserved nature among retroviruses and its high structural stability. The targeted residues, belonging to the beta16/beta17 beta-hairpin, modulate gp120 binding to CD4 and gp120-CD4 complex binding to CCR5. Thus, it appears that this gp120 structure acts as a hinge between the CD4-binding site and the putative coreceptor binding structure. Substitution of amino acid residues like E381A did not affect gp120 binding to CD4 and did not induce significant structural changes in gp120, as demonstrated by epitope analysis, BIACORE analysis, and circular dichroism. Nevertheless, E381 has a critical influence on the maintenance of CCR5 coreceptor binding by forming a salt bridge with K207. Another important element of the beta-hairpin in this interaction is the probable hydrophobic link between F383 and I420. Altogether, these results suggest that the beta-hairpin structure likely governs interactions between the surface of gp120 with native CCR5 or the CCR5 amino-terminal domain (CCR5-Nt). The mutations within the beta-hairpin had a direct effect on the proximal surface of the bridging sheet, the putative CCR5 surface, and the gp120 YU2 HIV-1-CD4 binding site. These results on the gp120-CCR5-Nt binding mechanism contribute to our understanding of CCR5 and HIV-1 gp120 association and HIV-1 entry; they may also contribute to designing novel inhibitors.
尽管gp120 CD4诱导的结构已得到大量记录,并且至少部分通过结晶得以阐明,但尽管进行了大量研究,关于gp120共受体诱导的结构的信息仍然不完整。在这项工作中,由于HIV-1/YU2 gp120的选定内部区域靠近CD4结合位点,在逆转录病毒中具有高度保守性且结构稳定性高,因此对该区域进行了突变。属于β16/β17β-发夹结构的靶向残基调节gp120与CD4的结合以及gp120-CD4复合物与CCR5的结合。因此,这种gp120结构似乎充当了CD4结合位点与假定的共受体结合结构之间的铰链。如抗原表位分析、生物传感器分析和圆二色性所示,氨基酸残基如E381A的取代既不影响gp120与CD4的结合,也不会在gp120中引起显著的结构变化。然而,E381通过与K207形成盐桥,对维持CCR5共受体结合具有关键影响。在这种相互作用中,β-发夹的另一个重要元素是F383和I420之间可能的疏水连接。总之,这些结果表明β-发夹结构可能控制gp120表面与天然CCR5或CCR5氨基末端结构域(CCR5-Nt)之间的相互作用。β-发夹内的突变对桥接片的近端表面、假定的CCR5表面和gp120 YU2 HIV-1-CD4结合位点有直接影响。这些关于gp120-CCR5-Nt结合机制的结果有助于我们理解CCR5与HIV-1 gp120的关联以及HIV-1的进入;它们也可能有助于设计新型抑制剂。