Kwong P D, Wyatt R, Majeed S, Robinson J, Sweet R W, Sodroski J, Hendrickson W A
Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA.
Structure. 2000 Dec 15;8(12):1329-39. doi: 10.1016/s0969-2126(00)00547-5.
The gp120 exterior envelope glycoprotein of HIV-1 binds sequentially to CD4 and chemokine receptors on cells to initiate virus entry. During natural infection, gp120 is a primary target of the humoral immune response, and it has evolved to resist antibody-mediated neutralization. We previously reported the structure at 2.5 A of a gp120 core from the HXBc2 laboratory-adapted isolate in complex with a 2 domain fragment of CD4 and the antigen binding fragment of a human antibody. This revealed atomic details of gp120-receptor interactions and suggested multiple mechanisms of immune evasion.
We have now extended the HXBc2 structure in P222, crystals to 2.2 A. The enhanced resolution enabled a more accurate modeling of less-well-ordered regions and provided conclusive identification of the density in the central cavity at the crux of the gp120-CD4 interaction as isopropanol from the crystallization medium. We have also determined the structure of a gp120 core from the primary clinical HIV-1 isolate, YU2, in the same ternary complex but in a C2 crystal lattice. Comparisons of HXBc2 and YU2 showed that while CD4 binding was rigid, portions of the gp120 core were conformationally flexible; overall differences were minor, with sequence changes concentrated on a surface expected to be exposed on the envelope oligomer.
Despite dramatic antigenic differences between primary and laboratory-adapted HIV-1, the gp120 cores from these isolates are remarkably similar. Taken together with chimeric substitution and sequence analysis, this indicates that neutralization resistance is specified by quaternary interactions involving the major variable loops and thus affords a mechanism for viral adaptation. Conservation of the central cavity suggests the possibility of therapeutic inhibitors. The structures reported here extend in detail and generality our understanding of the biology of the gp120 envelope glycoprotein.
HIV-1的gp120外膜糖蛋白依次与细胞上的CD4和趋化因子受体结合,从而启动病毒进入。在自然感染过程中,gp120是体液免疫反应的主要靶点,并且已经进化到能够抵抗抗体介导的中和作用。我们之前报道了来自HXBc2实验室适应株的gp120核心与CD4的2结构域片段及人源抗体的抗原结合片段形成复合物时在2.5埃分辨率下的结构。这揭示了gp120与受体相互作用的原子细节,并提示了多种免疫逃逸机制。
我们现在将P222晶体中的HXBc2结构扩展到了2.2埃分辨率。更高的分辨率使得对有序性较差区域的建模更加准确,并确定了在gp120-CD4相互作用关键部位的中心腔内的密度为来自结晶介质的异丙醇。我们还确定了来自原发性临床HIV-1分离株YU2的gp120核心在相同三元复合物中的结构,但处于C2晶格中。HXBc2和YU2的比较表明,虽然CD4结合是刚性的,但gp120核心的部分区域在构象上是灵活的;总体差异较小,序列变化集中在预计会暴露于包膜寡聚体表面的区域。
尽管原发性和实验室适应型HIV-1之间存在显著的抗原差异,但这些分离株的gp120核心非常相似。结合嵌合替换和序列分析,这表明中和抗性是由涉及主要可变环的四级相互作用所决定的,从而为病毒适应提供了一种机制。中心腔的保守性提示了治疗性抑制剂的可能性。这里报道的结构详细且全面地扩展了我们对gp120包膜糖蛋白生物学的理解。