Suppr超能文献

多层心脏灌注磁共振成像的无监督运动补偿

Unsupervised motion-compensation of multi-slice cardiac perfusion MRI.

作者信息

Stegmann M B, Olafsdóttir H, Larsson H B W

机构信息

Informatics and Mathematical Modelling, Technical University of Denmark, Richard Petersens Plads, DK-2800 Kgs. Lyngby, Denmark.

出版信息

Med Image Anal. 2005 Aug;9(4):394-410. doi: 10.1016/j.media.2004.10.002.

Abstract

This paper presents a novel method for registration of single and multi-slice cardiac perfusion MRI. Utilising off-line computer intensive analyses of variance and clustering in an annotated training set, the presented method is capable of providing registration without any manual interaction in less than a second per frame. Changes in image intensity during the bolus passage are modelled by a slice-coupled active appearance model, which is augmented with a cluster analysis of the training set. Landmark correspondences are optimised using the MDL framework due to Davies et al. Image search is verified and stabilised using perfusion specific prior models of pose and shape estimated from training data. Qualitative and quantitative validation of the method is carried out using 2000 clinical quality, short-axis, perfusion MR slice images, acquired from 10 freely breathing patients with acute myocardial infarction. Despite evident perfusion deficits and varying image quality in the limited training set, a leave-one-out cross-validation of the method showed a mean point to curve distance of 1.25+/-0.36 pixels for the left and right ventricle combined. We conclude that this learning-based method holds great promise for the automation of cardiac perfusion investigations, due to its accuracy, robustness and generalisation ability.

摘要

本文提出了一种用于单切片和多切片心脏灌注磁共振成像(MRI)配准的新方法。通过对带注释的训练集进行离线计算机密集型方差分析和聚类,该方法能够在每帧不到一秒的时间内无需任何人工干预即可完成配准。团注通过期间的图像强度变化由切片耦合主动外观模型进行建模,该模型通过对训练集的聚类分析得到增强。利用戴维斯等人提出的最小描述长度(MDL)框架优化地标对应关系。使用从训练数据估计的灌注特定姿势和形状先验模型对图像搜索进行验证和稳定。使用从10名急性心肌梗死自由呼吸患者获取的2000幅临床质量短轴灌注MR切片图像对该方法进行定性和定量验证。尽管有限训练集中存在明显的灌注缺陷和不同的图像质量,但该方法的留一法交叉验证显示,左心室和右心室组合的平均点到曲线距离为1.25±0.36像素。我们得出结论,这种基于学习的方法因其准确性、鲁棒性和泛化能力,在心脏灌注检查自动化方面具有很大的前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验