Dierks Thomas, Dickmanns Achim, Preusser-Kunze Andrea, Schmidt Bernhard, Mariappan Malaiyalam, von Figura Kurt, Ficner Ralf, Rudolph Markus Georg
Department of Biochemistry II, University of Göttingen, D-37073 Göttingen, Germany.
Department of Molecular Structural Biology, University of Göttingen, D-37077 Göttingen, Germany.
Cell. 2005 May 20;121(4):541-552. doi: 10.1016/j.cell.2005.03.001.
Sulfatases are enzymes essential for degradation and remodeling of sulfate esters. Formylglycine (FGly), the key catalytic residue in the active site, is unique to sulfatases. In higher eukaryotes, FGly is generated from a cysteine precursor by the FGly-generating enzyme (FGE). Inactivity of FGE results in multiple sulfatase deficiency (MSD), a fatal autosomal recessive syndrome. Based on the crystal structure, we report that FGE is a single-domain monomer with a surprising paucity of secondary structure and adopts a unique fold. The effect of all 18 missense mutations found in MSD patients is explained by the FGE structure, providing a molecular basis of MSD. The catalytic mechanism of FGly generation was elucidated by six high-resolution structures of FGE in different redox environments. The structures allow formulation of a novel oxygenase mechanism whereby FGE utilizes molecular oxygen to generate FGly via a cysteine sulfenic acid intermediate.
硫酸酯酶是硫酸酯降解和重塑所必需的酶。甲酰甘氨酸(FGly)是活性位点中的关键催化残基,是硫酸酯酶所特有的。在高等真核生物中,FGly由FGly生成酶(FGE)从半胱氨酸前体生成。FGE的失活会导致多种硫酸酯酶缺乏症(MSD),这是一种致命的常染色体隐性综合征。基于晶体结构,我们报告FGE是一种单结构域单体,其二级结构出奇地少,并采用独特的折叠方式。MSD患者中发现的所有18个错义突变的影响都可以通过FGE结构来解释,这为MSD提供了分子基础。通过在不同氧化还原环境下FGE的六个高分辨率结构阐明了FGly生成的催化机制。这些结构使得能够构建一种新的加氧酶机制,即FGE利用分子氧通过半胱氨酸亚磺酸中间体生成FGly。