Soultani-Vigneron S, Dugas V, Rouillat M H, Fédollière J, Duclos M C, Vnuk E, Phaner-Goutorbe M, Bulone V, Martin J R, Wallach J, Cloarec J P
LEOM UMR CNRS 5512, Ecole Centrale de Lyon, 69134 Ecully, France.
J Chromatogr B Analyt Technol Biomed Life Sci. 2005 Aug 5;822(1-2):304-10. doi: 10.1016/j.jchromb.2005.04.019.
Proteomic microarrays show a wide range of applications for the investigation of DNA-protein, enzyme-substrate as well as protein-protein interactions. Among many challenges to build a viable "protein microarray", the surface chemistry that will allow to immobilised various proteins to retain their biological activity is of paramount importance. Here we report a chemical functionalisation method allowing immobilisation of oligo-peptides onto silica surface (porous silica, glass, thermal silicon dioxide). Substrates were first derivatised with a monofunctional silane allowing the elaboration of dense and uniform monolayers in highly reproducible way. Prior to the oligo-peptides grafting, this organic layer was functionalised with an amino-polyethyleneglycol. The coupling step of oligo-peptides onto functionalised supports is achieved through activation of the C-terminal function of the oligo-peptides. Chemical surface modifications were followed by FTIR spectroscopy, AFM measurements and fluorescence scanning microscopy. A systematic study of the oligo-peptide grafting conditions (time, concentration, solvent) was carried out to optimise this step. The oligo-peptides grafting strategy implemented in this work ensure a covalent and oriented grafting of the oligo-peptides. This orientation is ensured through the use of fully protected peptide except the terminal primary amine. The immobilized peptides will be then deprotected before biological recognition. This strategy is crucial to retain the biological activity of thousands of oligo-probes assessed on a microarray.
蛋白质微阵列在研究DNA-蛋白质、酶-底物以及蛋白质-蛋白质相互作用方面展现出广泛的应用。在构建可行的“蛋白质微阵列”面临的诸多挑战中,能使各种蛋白质固定化并保持其生物活性的表面化学至关重要。在此,我们报告一种化学功能化方法,可将寡肽固定到二氧化硅表面(多孔二氧化硅、玻璃、热生长二氧化硅)。首先用单官能硅烷对底物进行衍生化,从而以高度可重复的方式形成致密且均匀的单分子层。在寡肽接枝之前,用氨基聚乙二醇对该有机层进行功能化。通过激活寡肽的C末端功能,实现寡肽与功能化载体的偶联步骤。化学表面修饰通过傅里叶变换红外光谱、原子力显微镜测量和荧光扫描显微镜进行跟踪。对寡肽接枝条件(时间、浓度、溶剂)进行了系统研究以优化此步骤。本工作中实施的寡肽接枝策略确保了寡肽的共价且定向接枝。这种定向通过使用除末端伯胺外完全保护的肽来确保。然后在生物识别之前将固定化的肽脱保护。该策略对于保留在微阵列上评估的数千种寡探针的生物活性至关重要。