Stevanin Tânia M, Moir James W B, Read Robert C
Infection & Immunity, Division of Genomic Medicine, Sheffield University School of Medicine and Biomedical Science, Beech Hill Road, Sheffield S10 2RX, United Kingdom.
Infect Immun. 2005 Jun;73(6):3322-9. doi: 10.1128/IAI.73.6.3322-3329.2005.
Nitric oxide (NO) contributes to mammalian host defense by direct microbicidal activity and as a signaling molecule of innate immune responses. Macrophages produce NO via the inducible NO synthase (iNOS). The genome of Neisseria meningitidis includes two genes, norB (encoding nitric oxide reductase) and cycP (encoding cytochrome c'), both of which detoxify NO in pure cultures of N. meningitidis. We show here that norB, and to a lesser extent cycP, enhance survival of N. meningitidis within primary human macrophages. Furthermore, accumulation of lysosome-associated membrane protein 1 (LAMP-1) is modified in phagosomes containing an isogenic norB mutant of N. meningitidis compared to the wild type. The survival enhancement conferred by norB and cycP is ablated by pretreatment of macrophages with the nitric oxide synthase inhibitor N(G)-monomethyl-L-arginine (L-NMMA). Despite this evidence that NO detoxification confers advantage, we find, using a highly sensitive chemiluminescence technique, that human macrophage-associated [NO] is low even after activation by lipopolysaccharide and interferon alpha. Furthermore, wild-type N. meningitidis further depletes cell-associated NO during phagocytosis by an active mechanism and survives relatively poorly in the presence of L-NMMA, suggesting that the wild-type organism may utilize NO for optimal survival during intracellular life. The natural habitat of N. meningitidis is the human nasopharynx. Using a nasopharyngeal mucosa organ culture system, we show that mutants lacking norB and cycP also survive poorly in nasopharyngeal tissue compared to wild-type N. meningitidis. These findings indicate that the meningococcus requires active NO detoxification systems for optimal survival during experimental nasopharyngeal colonization and processing by human phagocytic cells.
一氧化氮(NO)通过直接杀菌活性以及作为先天性免疫反应的信号分子,对哺乳动物宿主防御发挥作用。巨噬细胞通过诱导型一氧化氮合酶(iNOS)产生NO。脑膜炎奈瑟菌的基因组包含两个基因,norB(编码一氧化氮还原酶)和cycP(编码细胞色素c'),在脑膜炎奈瑟菌的纯培养物中,这两个基因均可使NO解毒。我们在此表明,norB以及程度稍低的cycP可增强脑膜炎奈瑟菌在原代人巨噬细胞内的存活能力。此外,与野生型相比,含有脑膜炎奈瑟菌同基因norB突变体的吞噬小体中溶酶体相关膜蛋白1(LAMP-1)的积累发生了改变。用一氧化氮合酶抑制剂N(G)-单甲基-L-精氨酸(L-NMMA)预处理巨噬细胞,可消除norB和cycP赋予的存活增强作用。尽管有证据表明NO解毒具有优势,但我们使用高度敏感的化学发光技术发现,即使在脂多糖和干扰素α激活后,人巨噬细胞相关的[NO]水平仍然很低。此外,野生型脑膜炎奈瑟菌在吞噬过程中通过一种主动机制进一步消耗细胞相关的NO,并且在L-NMMA存在的情况下存活相对较差,这表明野生型菌株可能利用NO在细胞内生存期间实现最佳存活。脑膜炎奈瑟菌的自然栖息地是人类鼻咽部。使用鼻咽黏膜器官培养系统,我们发现与野生型脑膜炎奈瑟菌相比,缺乏norB和cycP的突变体在鼻咽组织中的存活能力也很差。这些发现表明,在实验性鼻咽部定植以及被人吞噬细胞处理的过程中,脑膜炎奈瑟菌需要活跃的NO解毒系统以实现最佳存活。