Suppr超能文献

Anoxia induces Ca2+ influx and loss of cell membrane integrity in rat extensor digitorum longus muscle.

作者信息

Fredsted Anne, Mikkelsen Ulla Ramer, Gissel Hanne, Clausen Torben

机构信息

Department of Physiology, University of Aarhus, Ole Worms Allé 160, DK-8000 Arhus C, Denmark.

出版信息

Exp Physiol. 2005 Sep;90(5):703-14. doi: 10.1113/expphysiol.2005.030247. Epub 2005 May 20.

Abstract

Anoxia can lead to skeletal muscle damage. In this study we have investigated whether an increased influx of Ca2+, which is known to cause damage during electrical stimulation, is a causative factor in anoxia-induced muscle damage. Isolated extensor digitorum longus (EDL) muscles from 4-week-old Wistar rats were mounted at resting length and were either resting or stimulated (30 min, 40 Hz, 10 s on, 30 s off) in the presence of standard oxygenation (95% O2, 5% CO2), anoxia (95% N2, 5% CO2) or varying degrees of reduced oxygenation. At varying extracellular Ca2+ concentrations ([Ca2+]o), 45Ca influx and total cellular Ca2+ content were measured and the release of lactic acid dehydrogenase (LDH) was determined as an indicator of cell membrane leakage. In resting muscles, incubated at 1.3 mM Ca2+, 15-75 min of exposure to anoxia increased 45Ca influx by 46-129% (P<0.001) and Ca2+ content by 20-50% (P<0.001). Mg2+ (11.2 mM) reduced the anoxia-induced increase in 45Ca influx by 43% (P<0.001). In muscles incubated at 20 and 5% O2, 45Ca influx was also stimulated (P<0.001). Increasing [Ca2+]o to 5 mM induced a progressive increase in both 45Ca uptake and LDH release in resting anoxic muscles. When electrical stimulation was applied during anoxia, Ca2+ content and LDH release increased markedly and showed a significant correlation (r2=0.55, P<0.001). In conclusion, anoxia or incubation at 20 or 5% O2 leads to an increased influx of 45Ca. This is associated with a loss of cell membrane integrity, possibly initiated by Ca2+. The loss of cell membrane integrity further increases Ca2+ influx, which may elicit a self-amplifying process of cell membrane leakage.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验