Chaudhry Saima, Jin Lei, Meltzer David
University of Chicago, Chicago, Illinois, USA.
Med Care. 2005 Jun;43(6):607-15. doi: 10.1097/01.mlr.0000163658.65008.ec.
The Charlson Comorbidity Index, a popular tool for risk adjustment, often is constructed from medical record abstracts or administrative data. Limitations in both sources have fueled interest in using patient self-report as an alternative. However, little data exist on whether self-reported Charlson Indices predict mortality.
We sought to determine whether a self-reported Charlson Index predicts mortality, its performance relative to indices derived from administrative data, and whether using study-specific weights instead of Charlson's original weights enhances model fit.
We surveyed 7761 patients admitted to a university medical service over the course of 4 years and extracted their administrative data. We constructed 6 different Charlson indices by using 2 weighting schemes (original Charlson weights and study-specific weights) and 3 different datasources (ICD-9CM data for index hospitalization, ICD-9CM data with a 1-year look-back period, and patient self-report of comorbidities.) Multivariate models were constructed predicting 1-year mortality, log total costs, and log length of stay.
The 6 measures of the Charlson index all predicted 1-year mortality. Models with age and gender, with or without diagnosis-related group, had approximately the same predictive power regardless of which of the 6 Charlson indices were used. Nevertheless, there were small improvements in model fit using administrative data versus self-report, or study-specific versus original weights. All models obtained areas under the receiver operating curve of 0.70 to 0.77.
Overall, self-reported Charlson indices predict 1-year mortality comparably with indices based on administrative data. Administrative data may offer some small improvements in predictive ability and may be preferred when readily available.
查尔森合并症指数是一种常用的风险调整工具,通常根据病历摘要或管理数据构建。这两种数据来源的局限性引发了人们对使用患者自我报告作为替代方法的兴趣。然而,关于自我报告的查尔森指数能否预测死亡率的数据很少。
我们试图确定自我报告的查尔森指数是否能预测死亡率,其与基于管理数据得出的指数相比的表现,以及使用特定研究权重而非查尔森原始权重是否能提高模型拟合度。
我们对一所大学医疗服务机构在4年期间收治的7761名患者进行了调查,并提取了他们的管理数据。我们使用2种加权方案(查尔森原始权重和特定研究权重)和3种不同数据源(索引住院的ICD-9CM数据、有1年回顾期的ICD-9CM数据以及患者合并症的自我报告)构建了6种不同的查尔森指数。构建多变量模型来预测1年死亡率、对数总成本和对数住院时长。
查尔森指数的6种测量方法均能预测1年死亡率。无论使用6种查尔森指数中的哪一种,包含年龄和性别、有无诊断相关组的模型都具有大致相同的预测能力。然而,与自我报告相比,使用管理数据,或者与原始权重相比,使用特定研究权重,模型拟合度有小幅提高。所有模型的受试者工作特征曲线下面积均在0.70至0.77之间。
总体而言,自我报告的查尔森指数在预测1年死亡率方面与基于管理数据的指数相当。管理数据在预测能力上可能有一些小幅提升,并且在容易获取时可能更受青睐。