Suppr超能文献

Structure and ultrafast dynamics of liquid water: a quantum mechanics/molecular mechanics molecular dynamics simulations study.

作者信息

Xenides Demetrios, Randolf Bernhard R, Rode Bernd M

机构信息

Department of Theoretical Chemistry, Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Austria.

出版信息

J Chem Phys. 2005 May 1;122(17):174506. doi: 10.1063/1.1888465.

Abstract

A quantum mechanics/molecular mechanics molecular dynamics simulation was performed for liquid water to investigate structural and dynamical properties of this peculiar liquid. The most important region containing a central reference molecule and all nearest surrounding molecules (first coordination shell) was treated by Hartree-Fock (HF), post-Hartree-Fock [second-order Moller-Plesset perturbation theory (MP2)], and hybrid density functional B3LYP [Becke's three parameter functional (B3) with the correlation functional of Lee, Yang, and Parr (LYP)] methods. In addition, another HF-level simulation (2HF) included the full second coordination shell. Site to site interactions between oxygen-oxygen, oxygen-hydrogen, and hydrogen-hydrogen atoms of all ab initio methods were compared to experimental data. The absence of a second peak and the appearance of a shoulder instead in the gO-O graph obtained from the 2HF simulation is notable, as this feature has been observed so far only for pressurized or heated water. Dynamical data show that the 2HF procedure compensates some of the deficiency of the HF one-shell simulation, reducing the difference between correlated (MP2) and HF results. B3LYP apparently leads to too rigid structures and thus to an artificial slow down of the dynamics.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验