Hanna K D, Jouve F E, Waring G O, Ciarlet P G
Department of Ophthalmology, Emory University, Atlanta, GA 30322.
Refract Corneal Surg. 1992 Mar-Apr;8(2):152-63.
The development of refractive corneal surgery involves numerous attempts to isolate the effect of individual factors on surgical outcome. Computer simulation of refractive keratotomy allows the surgeon to alter variables of the technique and to isolate the effect of specific factors independent of other factors, something that cannot easily be done in any of the currently available experimental models.
We used the finite element numerical method to construct a mathematical model of the eye. The model analyzed stress-strain relationships in the normal corneoscleral shell and after astigmatic surgery. The model made the following assumptions: an axisymmetric eye, an idealized aspheric anterior corneal surface, transversal isotropy of the cornea, nonlinear strain tensor for large displacements, and near incompressibility of the corneoscleral shell. The eye was assumed to be fixed at the level of the optic nerve. The model described the acute elastic response of the eye to corneal surgery.
We analyzed the effect of paired transverse arcuate corneal incisions for the correction of astigmatism. We evaluated the following incision variables and their effect on change in curvature of the incised and unincised meridians: length (longer, more steepening of unincised meridian), distance from the center of the cornea (farther, less flattening of incised meridian), depth (deeper, more effect), and the initial amount of astigmatism (small effect).
Our finite element computer model gives reasonably accurate information about the relative effects of different surgical variables, and demonstrates the feasibility of using nonlinear, anisotropic assumptions in the construction of such a computer model. Comparison of these computer-generated results to clinically achieved results may help refine the computer model.
屈光性角膜手术的发展涉及众多尝试,旨在分离各个因素对手术结果的影响。屈光性角膜切开术的计算机模拟使外科医生能够改变该技术的变量,并独立于其他因素分离特定因素的影响,而这在任何现有的实验模型中都不容易做到。
我们使用有限元数值方法构建了眼睛的数学模型。该模型分析了正常角膜巩膜壳以及散光手术后的应力 - 应变关系。该模型做出了以下假设:轴对称眼睛、理想化的非球面角膜前表面、角膜的横向各向同性、大位移时的非线性应变张量以及角膜巩膜壳近乎不可压缩。假设眼睛在视神经水平处固定。该模型描述了眼睛对角膜手术的急性弹性反应。
我们分析了用于矫正散光的成对横向弧形角膜切口的效果。我们评估了以下切口变量及其对切开和未切开子午线曲率变化的影响:长度(更长,未切开子午线的变陡更多)、距角膜中心的距离(更远,切开子午线的变平更少)、深度(更深,效果更大)以及初始散光量(影响较小)。
我们的有限元计算机模型给出了关于不同手术变量相对影响的合理准确信息,并证明了在构建此类计算机模型时使用非线性、各向异性假设的可行性。将这些计算机生成的结果与临床实际结果进行比较可能有助于完善计算机模型。