Park Daeui, Lee Semin, Bolser Dan, Schroeder Michael, Lappe Michael, Oh Donghoon, Bhak Jong
Object Interaction Technologies Inc., CMS Building 705, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Korea.
Bioinformatics. 2005 Aug 1;21(15):3234-40. doi: 10.1093/bioinformatics/bti512. Epub 2005 May 24.
Many genomes have been completely sequenced. However, detecting and analyzing their protein-protein interactions by experimental methods such as co-immunoprecipitation, tandem affinity purification and Y2H is not as fast as genome sequencing. Therefore, a computational prediction method based on the known protein structural interactions will be useful to analyze large-scale protein-protein interaction rules within and among complete genomes.
We confirmed that all the predicted protein family interactomes (the full set of protein family interactions within a proteome) of 146 species are scale-free networks, and they share a small core network comprising 36 protein families related to indispensable cellular functions. We found two fundamental differences among prokaryotic and eukaryotic interactomes: (1) eukarya had significantly more hub families than archaea and bacteria and (2) certain special hub families determined the topology of the eukaryotic interactomes. Our comparative analysis suggests that a very small number of expansive protein families led to the evolution of interactomes and seemed to have played a key role in species diversification.
许多基因组已被完全测序。然而,通过诸如免疫共沉淀、串联亲和纯化和酵母双杂交等实验方法来检测和分析它们的蛋白质-蛋白质相互作用,并不像基因组测序那样迅速。因此,一种基于已知蛋白质结构相互作用的计算预测方法,对于分析完整基因组内部和之间的大规模蛋白质-蛋白质相互作用规则将是有用的。
我们证实,146个物种的所有预测蛋白质家族相互作用组(蛋白质组内蛋白质家族相互作用的完整集合)都是无标度网络,并且它们共享一个由36个与不可或缺的细胞功能相关的蛋白质家族组成的小核心网络。我们发现原核生物和真核生物相互作用组之间存在两个根本差异:(1)真核生物比古细菌和细菌具有显著更多的枢纽家族;(2)某些特殊的枢纽家族决定了真核生物相互作用组的拓扑结构。我们的比较分析表明,极少数扩张性蛋白质家族导致了相互作用组的进化,并且似乎在物种多样化中发挥了关键作用。