Suppr超能文献

泽尼克多项式在表征眼睛的光学像差和角膜表面方面的准确性。

Accuracy of Zernike polynomials in characterizing optical aberrations and the corneal surface of the eye.

作者信息

Carvalho Luis Alberto

机构信息

Grupo de Optica, Instituto de Física de São Carlos, Universidade de São Paulo (IFSC-USP), Brazil.

出版信息

Invest Ophthalmol Vis Sci. 2005 Jun;46(6):1915-26. doi: 10.1167/iovs.04-1222.

Abstract

PURPOSE

Zernike polynomials have been successfully used for approximately 70 years in many different fields of optics. Nevertheless, there are some recent discussions regarding the precision and accuracy of these polynomials when applied to surfaces such as the human cornea. The main objective of this work was to investigate the absolute accuracy of Zernike polynomials of different orders when fitting several types of theoretical corneal and wave-front surface data.

METHODS

A set of synthetic surfaces resembling several common corneal anomalies was sampled by using cylindrical coordinates to simulate the height output files of commercial videokeratography systems. The same surfaces were used to compute the optical path difference (wave-front [WF] error), by using a simple ray-tracing procedure. Corneal surface and WF error was fit by using a least-squares algorithm and Zernike polynomials of different orders, varying from 1 to 36 OSA-VSIA convention terms.

RESULTS

The root mean square error (RMSE) ranged-from the most symmetric corneal surface (spherical shape) through the most complex shape (after radial keratotomy [RK]) for both the optical path difference and the surface elevation for 1 through 36 Zernike terms-from 421.4 to 0.8 microm and 421.4 to 8.2 microm, respectively. The mean RMSE for the maximum Zernike terms for both surfaces was 4.5 microm.

CONCLUSIONS

These results suggest that, for surfaces such as that present after RK, in keratoconus, or after keratoplasty, even more than 36 terms may be necessary to obtain minimum accuracy requirements. The author suggests that the number of Zernike polynomials should not be a global fixed conventional or generally accepted value but rather a number based on specific surface properties and desired accuracy.

摘要

目的

泽尼克多项式在许多不同的光学领域已成功应用约70年。然而,最近对于这些多项式应用于诸如人眼角膜等表面时的精度和准确性存在一些讨论。这项工作的主要目的是研究不同阶泽尼克多项式在拟合几种类型的理论角膜和波前表面数据时的绝对准确性。

方法

通过使用圆柱坐标对一组类似于几种常见角膜异常的合成表面进行采样,以模拟商业视频角膜地形图系统的高度输出文件。通过简单的光线追踪程序,使用相同的表面来计算光程差(波前[WF]误差)。角膜表面和WF误差通过使用最小二乘法算法和不同阶的泽尼克多项式进行拟合,阶数从1到36个OSA - VSIA约定项不等。

结果

对于1至36个泽尼克项,无论是光程差还是表面高度,均方根误差(RMSE)范围从最对称的角膜表面(球形)到最复杂的形状(放射状角膜切开术[RK]后),分别从421.4至0.8微米和421.4至8.2微米。两个表面的最大泽尼克项的平均RMSE为4.5微米。

结论

这些结果表明,对于RK后、圆锥角膜或角膜移植术后出现的表面,可能需要超过36项才能满足最低精度要求。作者建议泽尼克多项式的数量不应是一个全局固定的常规或普遍接受的值,而应是基于特定表面特性和所需精度的一个数值。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验