Suppr超能文献

利用细菌系统揭示抗疟药物阿托伐醌的分子作用模式。

Uncovering the molecular mode of action of the antimalarial drug atovaquone using a bacterial system.

作者信息

Mather Michael W, Darrouzet Elisabeth, Valkova-Valchanova Maria, Cooley Jason W, McIntosh Michael T, Daldal Fevzi, Vaidya Akhil B

机构信息

Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129, USA.

出版信息

J Biol Chem. 2005 Jul 22;280(29):27458-65. doi: 10.1074/jbc.M502319200. Epub 2005 May 24.

Abstract

Atovaquone is an antiparasitic drug that selectively inhibits electron transport through the parasite mitochondrial cytochrome bc1 complex and collapses the mitochondrial membrane potential at concentrations far lower than those at which the mammalian system is affected. Because this molecule represents a new class of antimicrobial agents, we seek a deeper understanding of its mode of action. To that end, we employed site-directed mutagenesis of a bacterial cytochrome b, combined with biophysical and biochemical measurements. A large scale domain movement involving the iron-sulfur protein subunit is required for electron transfer from cytochrome b-bound ubihydroquinone to cytochrome c1 of the cytochrome bc1 complex. Here, we show that atovaquone blocks this domain movement by locking the iron-sulfur subunit in its cytochrome b-binding conformation. Based on our malaria atovaquone resistance data, a series of cytochrome b mutants was produced that were predicted to have either enhanced or reduced sensitivity to atovaquone. Mutations altering the bacterial cytochrome b at its ef loop to more closely resemble Plasmodium cytochrome b increased the sensitivity of the cytochrome bc1 complex to atovaquone. A mutation within the ef loop that is associated with resistant malaria parasites rendered the complex resistant to atovaquone, thereby providing direct proof that the mutation causes atovaquone resistance. This mutation resulted in a 10-fold reduction in the in vitro activity of the cytochrome bc1 complex, suggesting that it may exert a cost on efficiency of the cytochrome bc1 complex.

摘要

阿托伐醌是一种抗寄生虫药物,它能选择性抑制寄生虫线粒体细胞色素bc1复合物的电子传递,并在远低于影响哺乳动物系统的浓度下使线粒体膜电位崩溃。由于这种分子代表了一类新型抗菌剂,我们试图更深入地了解其作用方式。为此,我们采用了细菌细胞色素b的定点诱变技术,并结合生物物理和生化测量方法。从细胞色素b结合的泛醇向细胞色素bc1复合物的细胞色素c1进行电子转移,需要涉及铁硫蛋白亚基的大规模结构域移动。在这里,我们表明阿托伐醌通过将铁硫亚基锁定在其与细胞色素b结合的构象中来阻断这种结构域移动。基于我们的疟疾阿托伐醌抗性数据,产生了一系列细胞色素b突变体,预计它们对阿托伐醌的敏感性会增强或降低。将细菌细胞色素b的ef环改变为更类似于疟原虫细胞色素b的突变,增加了细胞色素bc1复合物对阿托伐醌的敏感性。与抗疟原虫相关的ef环内的一个突变使该复合物对阿托伐醌产生抗性,从而直接证明该突变导致阿托伐醌抗性。这种突变导致细胞色素bc1复合物的体外活性降低了10倍,这表明它可能会对细胞色素bc1复合物的效率产生代价。

相似文献

7

引用本文的文献

2
Metabolic vulnerability of cancer stem cells and their niche.癌症干细胞及其微环境的代谢脆弱性。
Front Pharmacol. 2024 Apr 10;15:1375993. doi: 10.3389/fphar.2024.1375993. eCollection 2024.
4
OXPHOS-targeting drugs in oncology: new perspectives.肿瘤治疗中的 OXPHOS 靶向药物:新视角。
Expert Opin Ther Targets. 2023 Jul-Dec;27(10):939-952. doi: 10.1080/14728222.2023.2261631. Epub 2023 Oct 30.
5
Unique Properties of Apicomplexan Mitochondria.顶复门细胞器的独特性质。
Annu Rev Microbiol. 2023 Sep 15;77:541-560. doi: 10.1146/annurev-micro-032421-120540. Epub 2023 Jul 5.
7
Parasite powerhouse: A review of the Toxoplasma gondii mitochondrion.寄生虫的能量工厂:弓形虫线粒体综述。
J Eukaryot Microbiol. 2022 Nov;69(6):e12906. doi: 10.1111/jeu.12906. Epub 2022 May 4.

本文引用的文献

6
10
The economic and social burden of malaria.疟疾的经济和社会负担。
Nature. 2002 Feb 7;415(6872):680-5. doi: 10.1038/415680a.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验