Norstrom Eric M, Mastrianni James A
Committee on Neurobiology and Department of Neurology, The University of Chicago, Chicago, Illinois 60637, USA.
J Biol Chem. 2005 Jul 22;280(29):27236-43. doi: 10.1074/jbc.M413441200. Epub 2005 May 25.
The molecular hallmark of prion disease is the conversion of normal prion protein (PrPC) to an insoluble, proteinase K-resistant, pathogenic isoform (PrPSc). Once generated, PrPSc propagates by complexing with, and transferring its pathogenic conformation onto, PrPC. Defining the specific nature of this PrPSc-PrPC interaction is critical to understanding prion genesis. To begin to approach this question, we employed a prion-infected neuroblastoma cell line (ScN2a) combined with a heterologous yeast expression system to independently model PrPSc generation and propagation. We additionally applied fluorescence resonance energy transfer analysis to the latter to specifically study PrP-PrP interactions. In this report we focus on an N-terminal hydrophobic palindrome of PrP (112-AGAAAAGA-119) thought to feature intimately in prion generation via an unclear mechanism. We found that, in contrast to wild type (wt) PrP, PrP lacking the palindrome (PrPDelta112-119) neither converted to PrPSc when expressed in ScN2a cells nor generated proteinase K-resistant PrP when expressed in yeast. Furthermore, PrPDelta112-119 was a dominant-negative inhibitor of wtPrP in ScN2a cells. Both wtPrP and PrPDelta112-119 were highly insoluble when expressed in yeast and produced distinct cytosolic aggregates when expressed as fluorescent fusion proteins (PrP::YFP). Although self-aggregation was evident, fluorescence resonance energy transfer studies in live yeast co-expressing PrPSc-like protein and PrPDelta112-119 indicated altered interaction properties. These results suggest that the palindrome is required, not only for the attainment of the PrPSc conformation but also to facilitate the proper association of PrPSc with PrPC to effect prion propagation.
朊病毒疾病的分子标志是正常朊病毒蛋白(PrPC)转变为不溶性、蛋白酶K抗性的致病异构体(PrPSc)。一旦生成,PrPSc通过与PrPC结合并将其致病构象传递给PrPC来进行传播。明确这种PrPSc-PrPC相互作用的具体性质对于理解朊病毒的起源至关重要。为了开始探讨这个问题,我们采用了朊病毒感染的神经母细胞瘤细胞系(ScN2a)并结合异源酵母表达系统,以独立模拟PrPSc的生成和传播。我们还对后者应用了荧光共振能量转移分析,以专门研究PrP-PrP相互作用。在本报告中,我们聚焦于PrP的N端疏水回文序列(112-AGAAAAGA-119),该序列被认为通过一种尚不清楚的机制在朊病毒生成中发挥着密切作用。我们发现,与野生型(wt)PrP不同,缺乏该回文序列的PrP(PrPDelta112-119)在ScN2a细胞中表达时既不转变为PrPSc,在酵母中表达时也不产生蛋白酶K抗性的PrP。此外,PrPDelta112-119在ScN2a细胞中是wtPrP的显性负性抑制剂。wtPrP和PrPDelta112-119在酵母中表达时都高度不溶,当作为荧光融合蛋白(PrP::YFP)表达时会产生不同的胞质聚集体。尽管自聚集很明显,但在共表达PrPSc样蛋白和PrPDelta112-119的活酵母中进行的荧光共振能量转移研究表明相互作用特性发生了改变。这些结果表明,该回文序列不仅是获得PrPSc构象所必需的,而且对于促进PrPSc与PrPC的正确结合以实现朊病毒传播也是必需的。