Suppr超能文献

果蝇中视紫红质的形成依赖于PINTA类视黄醇结合蛋白。

Rhodopsin formation in Drosophila is dependent on the PINTA retinoid-binding protein.

作者信息

Wang Tao, Montell Craig

机构信息

Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.

出版信息

J Neurosci. 2005 May 25;25(21):5187-94. doi: 10.1523/JNEUROSCI.0995-05.2005.

Abstract

Retinoids participate in many essential processes including the initial event in photoreception. 11-cis-retinal binds to opsin and undergoes a light-driven isomerization to all-trans-retinal. In mammals, the all-trans-retinal is converted to vitamin A (all-trans-retinol) and is transported to the retinal pigment epithelium (RPE), where along with dietary vitamin A, it is converted into 11-cis-retinal. Although this cycle has been studied extensively in mammals, many questions remain, including the specific roles of retinoid-binding proteins. Here, we establish the Drosophila visual system as a genetic model for characterizing retinoid-binding proteins. In a genetic screen for mutations that affect the biosynthesis of rhodopsin, we identified a novel CRAL-TRIO domain protein, prolonged depolarization afterpotential is not apparent (PINTA), which binds to all-trans-retinol. We demonstrate that PINTA functions subsequent to the production of vitamin A and is expressed and required in the retinal pigment cells. These results represent the first genetic evidence for a role for the retinal pigment cells in the visual response. Moreover, our data implicate Drosophila retinal pigment cells as functioning in the conversion of dietary all-trans-retinol to 11-cis-retinal and suggest that these cells are the closest invertebrate equivalent to the RPE.

摘要

视黄醛参与许多重要过程,包括光感受器中的初始事件。11-顺式视黄醛与视蛋白结合,并在光驱动下异构化为全反式视黄醛。在哺乳动物中,全反式视黄醛转化为维生素A(全反式视黄醇),并被运输到视网膜色素上皮(RPE),在那里它与膳食中的维生素A一起转化为11-顺式视黄醛。尽管这个循环在哺乳动物中已经得到了广泛研究,但仍有许多问题,包括视黄醛结合蛋白的具体作用。在这里,我们将果蝇视觉系统确立为表征视黄醛结合蛋白的遗传模型。在一项针对影响视紫红质生物合成的突变的遗传筛选中,我们鉴定出一种新型的CRAL-TRIO结构域蛋白,延长去极化后电位不明显(PINTA),它能与全反式视黄醇结合。我们证明PINTA在维生素A产生之后发挥作用,并且在视网膜色素细胞中表达且是必需的。这些结果代表了视网膜色素细胞在视觉反应中发挥作用的首个遗传学证据。此外,我们的数据表明果蝇视网膜色素细胞在将膳食中的全反式视黄醇转化为11-顺式视黄醛中发挥作用,并表明这些细胞是与RPE最接近的无脊椎动物等同物。

相似文献

引用本文的文献

1
The Role of Pigments in Light Color Variation of the Firefly .色素在萤火虫体色变化中的作用
Ecol Evol. 2025 Aug 19;15(8):e71927. doi: 10.1002/ece3.71927. eCollection 2025 Aug.
4
Molecular components affecting ocular carotenoid and retinoid homeostasis.影响眼类胡萝卜素和视黄醇内稳态的分子成分。
Prog Retin Eye Res. 2021 Jan;80:100864. doi: 10.1016/j.preteyeres.2020.100864. Epub 2020 Apr 25.
6
Evolution of Phototransduction Genes in Lepidoptera.昆虫光转导基因的进化。
Genome Biol Evol. 2019 Aug 1;11(8):2107-2124. doi: 10.1093/gbe/evz150.
9
Multifunctional glial support by Semper cells in the Drosophila retina.果蝇视网膜中Semper细胞的多功能神经胶质支持作用。
PLoS Genet. 2017 May 31;13(5):e1006782. doi: 10.1371/journal.pgen.1006782. eCollection 2017 May.

本文引用的文献

1
Neurobiology: bright blue times.神经生物学:辉煌时刻。
Nature. 2005 Feb 17;433(7027):698-9. doi: 10.1038/433698a.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验