Suppr超能文献

群体编码中的协同、冗余与独立性:再探讨

Synergy, redundancy, and independence in population codes, revisited.

作者信息

Latham Peter E, Nirenberg Sheila

机构信息

Gatsby Computational Neuroscience Unit, University College London, London WC1N 3AR, United Kingdom.

出版信息

J Neurosci. 2005 May 25;25(21):5195-206. doi: 10.1523/JNEUROSCI.5319-04.2005.

Abstract

Decoding the activity of a population of neurons is a fundamental problem in neuroscience. A key aspect of this problem is determining whether correlations in the activity, i.e., noise correlations, are important. If they are important, then the decoding problem is high dimensional: decoding algorithms must take the correlational structure in the activity into account. If they are not important, or if they play a minor role, then the decoding problem can be reduced to lower dimension and thus made more tractable. The issue of whether correlations are important has been a subject of heated debate. The debate centers around the validity of the measures used to address it. Here, we evaluate three of the most commonly used ones: synergy, DeltaI(shuffled), and DeltaI. We show that synergy and DeltaI(shuffled) are confounded measures: they can be zero when correlations are clearly important for decoding and positive when they are not. In contrast, DeltaI is not confounded. It is zero only when correlations are not important for decoding and positive only when they are; that is, it is zero only when one can decode exactly as well using a decoder that ignores correlations as one can using a decoder that does not, and it is positive only when one cannot decode as well. Finally, we show that DeltaI has an information theoretic interpretation; it is an upper bound on the information lost when correlations are ignored.

摘要

解码神经元群体的活动是神经科学中的一个基本问题。这个问题的一个关键方面是确定活动中的相关性,即噪声相关性,是否重要。如果它们很重要,那么解码问题就是高维的:解码算法必须考虑活动中的相关结构。如果它们不重要,或者只起次要作用,那么解码问题就可以降维,从而变得更容易处理。相关性是否重要的问题一直是激烈辩论的主题。辩论集中在用于解决该问题的测量方法的有效性上。在这里,我们评估三种最常用的方法:协同性、DeltaI(重排)和DeltaI。我们表明,协同性和DeltaI(重排)是混淆的测量方法:当相关性对解码显然很重要时它们可以为零,而当相关性不重要时它们可以为正。相比之下,DeltaI没有混淆。只有当相关性对解码不重要时它才为零,只有当相关性重要时它才为正;也就是说,只有当使用忽略相关性的解码器和解码器都能同样好地解码时它才为零,只有当不能同样好地解码时它才为正。最后,我们表明DeltaI具有信息论解释;它是忽略相关性时信息损失的上限。

相似文献

2
Synergy, redundancy, and independence in population codes.群体编码中的协同、冗余和独立性。
J Neurosci. 2003 Dec 17;23(37):11539-53. doi: 10.1523/JNEUROSCI.23-37-11539.2003.
3
Effects of noise correlations on information encoding and decoding.噪声相关性对信息编码与解码的影响。
J Neurophysiol. 2006 Jun;95(6):3633-44. doi: 10.1152/jn.00919.2005. Epub 2006 Mar 22.
6
Decoding neuronal spike trains: how important are correlations?解码神经元放电序列:相关性有多重要?
Proc Natl Acad Sci U S A. 2003 Jun 10;100(12):7348-53. doi: 10.1073/pnas.1131895100. Epub 2003 May 29.
8
Correlations and Neuronal Population Information.相关性与神经元群体信息。
Annu Rev Neurosci. 2016 Jul 8;39:237-56. doi: 10.1146/annurev-neuro-070815-013851. Epub 2016 Apr 21.
10
Indices for testing neural codes.用于测试神经编码的指标。
Neural Comput. 2008 Dec;20(12):2895-936. doi: 10.1162/neco.2008.10-07-633.

引用本文的文献

9
Computational methods to study information processing in neural circuits.研究神经回路中信息处理的计算方法。
Comput Struct Biotechnol J. 2023 Jan 11;21:910-922. doi: 10.1016/j.csbj.2023.01.009. eCollection 2023.
10
The structures and functions of correlations in neural population codes.神经群体编码中相关性的结构与功能。
Nat Rev Neurosci. 2022 Sep;23(9):551-567. doi: 10.1038/s41583-022-00606-4. Epub 2022 Jun 22.

本文引用的文献

2
Entropy and information in neural spike trains: progress on the sampling problem.神经脉冲序列中的熵与信息:采样问题的进展
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 May;69(5 Pt 2):056111. doi: 10.1103/PhysRevE.69.056111. Epub 2004 May 24.
4
Coding and transmission of information by neural ensembles.神经集群对信息的编码与传递。
Trends Neurosci. 2004 Apr;27(4):225-30. doi: 10.1016/j.tins.2004.02.006.
5
Synergy, redundancy, and independence in population codes.群体编码中的协同、冗余和独立性。
J Neurosci. 2003 Dec 17;23(37):11539-53. doi: 10.1523/JNEUROSCI.23-37-11539.2003.
6
Some informational aspects of visual perception.视觉感知的一些信息方面。
Psychol Rev. 1954 May;61(3):183-93. doi: 10.1037/h0054663.
9
Decoding neuronal spike trains: how important are correlations?解码神经元放电序列:相关性有多重要?
Proc Natl Acad Sci U S A. 2003 Jun 10;100(12):7348-53. doi: 10.1073/pnas.1131895100. Epub 2003 May 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验