Liu Z Lewis, Slininger Patricia J, Gorsich Steve W
National Center for Agricultural Utilization Research USDA-ARS, 1815 North University Street, Peoria, IL 61604, USA.
Appl Biochem Biotechnol. 2005 Spring;121-124:451-60.
Furfural and hydroxymethylfurfural (HMF) are representative inhibitors among many inhibitive compounds derived from biomass degradation and saccharification for bioethanol fermentation. Most yeasts, including industrial strains, are susceptible to these inhibitory compounds, especially when multiple inhibitors are present. Additional detoxification steps add cost and complexity to the process and generate additional waste products. To promote efficient bioethanol production, we studied the mechanisms of stress tolerance, particularly to fermentation inhibitors such as furfural and HMF. We recently reported a metabolite of 2,5-bis-hydroxymethylfuran as a conversion product of HMF and characterized a dose-dependent response of ethanologenic yeasts to inhibitors. In this study, we present newly adapted strains that demonstrated higher levels of tolerance to furfural and HMF. Saccharomyces cerevisiae 307-12H60 and 307-12H120 and Pichia stipitis 307 10H60 showed enhanced biotransformation ability to reduce HMF to 2,5-bis-hydroxymethylfuran at 30 and 60 mM, and S. cerevisiae 307-12-F40 converted furfural into furfuryl alcohol at significantly higher rates compared to the parental strains. Strains of S. cerevisiae converted 100% of HMF at 60 mM and S. cerevisiae 307-12-F40 converted 100% of furfural into furfuryl alcohol at 30 mM. The results of this study suggest a possible in situ detoxification of the inhibitors by using more inhibitor-tolerant yeast strains for bioethanol fermentation. The development of such tolerant strains provided a basis and useful materials for further studies on the mechanisms of stress tolerance.
糠醛和羟甲基糠醛(HMF)是生物质降解和糖化过程中产生的众多抑制性化合物中的代表性抑制剂,这些抑制性化合物会影响生物乙醇发酵。包括工业菌株在内的大多数酵母都对这些抑制性化合物敏感,尤其是当多种抑制剂同时存在时。额外的解毒步骤会增加工艺成本和复杂性,并产生额外的废弃物。为了促进高效生物乙醇生产,我们研究了酵母对压力的耐受性机制,特别是对糠醛和HMF等发酵抑制剂的耐受性机制。我们最近报道了一种2,5-双羟甲基呋喃代谢物作为HMF的转化产物,并表征了产乙醇酵母对抑制剂的剂量依赖性反应。在本研究中,我们展示了新筛选出的对糠醛和HMF具有更高耐受性的菌株。酿酒酵母307-12H60和307-12H120以及树干毕赤酵母307 10H60在30 mM和60 mM浓度下,将HMF还原为2,5-双羟甲基呋喃的生物转化能力增强,与亲本菌株相比,酿酒酵母307-12-F40将糠醛转化为糠醇的速率显著更高。酿酒酵母菌株在60 mM浓度下能将100%的HMF转化,酿酒酵母307-12-F40在30 mM浓度下能将100%的糠醛转化为糠醇。本研究结果表明,在生物乙醇发酵中使用对抑制剂耐受性更强的酵母菌株可能实现抑制剂的原位解毒。这些耐受性菌株的开发为进一步研究压力耐受机制提供了基础和有用材料。
Appl Biochem Biotechnol. 2005
Appl Microbiol Biotechnol. 2006-11
Biotechnol Bioeng. 2006-4-20
Biotechnol Bioeng. 2009-2-15
Appl Microbiol Biotechnol. 2025-3-12
J Fungi (Basel). 2023-9-29
Appl Microbiol Biotechnol. 2022-10
RSC Adv. 2018-7-26