文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

新开发的产乙醇酵母菌株对糠醛和羟甲基糠醛的生物转化增强

Enhanced biotransformation of furfural and hydroxymethylfurfural by newly developed ethanologenic yeast strains.

作者信息

Liu Z Lewis, Slininger Patricia J, Gorsich Steve W

机构信息

National Center for Agricultural Utilization Research USDA-ARS, 1815 North University Street, Peoria, IL 61604, USA.

出版信息

Appl Biochem Biotechnol. 2005 Spring;121-124:451-60.


DOI:
PMID:15917621
Abstract

Furfural and hydroxymethylfurfural (HMF) are representative inhibitors among many inhibitive compounds derived from biomass degradation and saccharification for bioethanol fermentation. Most yeasts, including industrial strains, are susceptible to these inhibitory compounds, especially when multiple inhibitors are present. Additional detoxification steps add cost and complexity to the process and generate additional waste products. To promote efficient bioethanol production, we studied the mechanisms of stress tolerance, particularly to fermentation inhibitors such as furfural and HMF. We recently reported a metabolite of 2,5-bis-hydroxymethylfuran as a conversion product of HMF and characterized a dose-dependent response of ethanologenic yeasts to inhibitors. In this study, we present newly adapted strains that demonstrated higher levels of tolerance to furfural and HMF. Saccharomyces cerevisiae 307-12H60 and 307-12H120 and Pichia stipitis 307 10H60 showed enhanced biotransformation ability to reduce HMF to 2,5-bis-hydroxymethylfuran at 30 and 60 mM, and S. cerevisiae 307-12-F40 converted furfural into furfuryl alcohol at significantly higher rates compared to the parental strains. Strains of S. cerevisiae converted 100% of HMF at 60 mM and S. cerevisiae 307-12-F40 converted 100% of furfural into furfuryl alcohol at 30 mM. The results of this study suggest a possible in situ detoxification of the inhibitors by using more inhibitor-tolerant yeast strains for bioethanol fermentation. The development of such tolerant strains provided a basis and useful materials for further studies on the mechanisms of stress tolerance.

摘要

糠醛和羟甲基糠醛(HMF)是生物质降解和糖化过程中产生的众多抑制性化合物中的代表性抑制剂,这些抑制性化合物会影响生物乙醇发酵。包括工业菌株在内的大多数酵母都对这些抑制性化合物敏感,尤其是当多种抑制剂同时存在时。额外的解毒步骤会增加工艺成本和复杂性,并产生额外的废弃物。为了促进高效生物乙醇生产,我们研究了酵母对压力的耐受性机制,特别是对糠醛和HMF等发酵抑制剂的耐受性机制。我们最近报道了一种2,5-双羟甲基呋喃代谢物作为HMF的转化产物,并表征了产乙醇酵母对抑制剂的剂量依赖性反应。在本研究中,我们展示了新筛选出的对糠醛和HMF具有更高耐受性的菌株。酿酒酵母307-12H60和307-12H120以及树干毕赤酵母307 10H60在30 mM和60 mM浓度下,将HMF还原为2,5-双羟甲基呋喃的生物转化能力增强,与亲本菌株相比,酿酒酵母307-12-F40将糠醛转化为糠醇的速率显著更高。酿酒酵母菌株在60 mM浓度下能将100%的HMF转化,酿酒酵母307-12-F40在30 mM浓度下能将100%的糠醛转化为糠醇。本研究结果表明,在生物乙醇发酵中使用对抑制剂耐受性更强的酵母菌株可能实现抑制剂的原位解毒。这些耐受性菌株的开发为进一步研究压力耐受机制提供了基础和有用材料。

相似文献

[1]
Enhanced biotransformation of furfural and hydroxymethylfurfural by newly developed ethanologenic yeast strains.

Appl Biochem Biotechnol. 2005

[2]
Adaptive response of yeasts to furfural and 5-hydroxymethylfurfural and new chemical evidence for HMF conversion to 2,5-bis-hydroxymethylfuran.

J Ind Microbiol Biotechnol. 2004-9

[3]
Genomic adaptation of ethanologenic yeast to biomass conversion inhibitors.

Appl Microbiol Biotechnol. 2006-11

[4]
Multiple gene-mediated NAD(P)H-dependent aldehyde reduction is a mechanism of in situ detoxification of furfural and 5-hydroxymethylfurfural by Saccharomyces cerevisiae.

Appl Microbiol Biotechnol. 2008-12

[5]
Tolerance and adaptation of ethanologenic yeasts to lignocellulosic inhibitory compounds.

Biotechnol Bioeng. 2006-4-20

[6]
Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae.

Appl Microbiol Biotechnol. 2006-7

[7]
Carbon fluxes of xylose-consuming Saccharomyces cerevisiae strains are affected differently by NADH and NADPH usage in HMF reduction.

Appl Microbiol Biotechnol. 2009-9

[8]
Culture nutrition and physiology impact the inhibitor tolerance of the yeast Pichia stipitis NRRL Y-7124.

Biotechnol Bioeng. 2009-2-15

[9]
Biotransformation of furfural and 5-hydroxymethyl furfural (HMF) by Clostridium acetobutylicum ATCC 824 during butanol fermentation.

N Biotechnol. 2011-9-10

[10]
Bioprospecting thermotolerant ethanologenic yeasts for simultaneous saccharification and fermentation from diverse environments.

J Biosci Bioeng. 2017-3

引用本文的文献

[1]
An adaptive, continuous substrate feeding strategy based on evolved gas to improve fed-batch ethanol fermentation.

Appl Microbiol Biotechnol. 2025-3-12

[2]
Improving furfural tolerance in a xylose-fermenting yeast Spathaspora passalidarum CMUWF1-2 via adaptive laboratory evolution.

Microb Cell Fact. 2024-3-13

[3]
Adaptive laboratory evolution to obtain furfural tolerant for bioethanol production and the underlying mechanism.

Front Microbiol. 2024-1-4

[4]
From to Ethanol: Unlocking the Power of Evolutionary Engineering in Metabolic Engineering Applications.

J Fungi (Basel). 2023-9-29

[5]
Copy number variants impact phenotype-genotype relationships for adaptation of industrial yeast Saccharomyces cerevisiae.

Appl Microbiol Biotechnol. 2022-10

[6]
Efficient bioconversion of furfural to furfuryl alcohol by NL01.

RSC Adv. 2018-7-26

[7]
Physiological comparisons among Spathaspora passalidarum, Spathaspora arborariae, and Scheffersomyces stipitis reveal the bottlenecks for their use in the production of second-generation ethanol.

Braz J Microbiol. 2022-6

[8]
A novel AST2 mutation generated upon whole-genome transformation of Saccharomyces cerevisiae confers high tolerance to 5-Hydroxymethylfurfural (HMF) and other inhibitors.

PLoS Genet. 2021-10

[9]
Reasons for 2-furaldehyde and 5-hydroxymethyl-2-furaldehyde resistance in Saccharomyces cerevisiae: current state of knowledge and perspectives for further improvements.

Appl Microbiol Biotechnol. 2021-4

[10]
Comparison of performances of different fungal laccases in delignification and detoxification of alkali-pretreated corncob for bioethanol production.

J Ind Microbiol Biotechnol. 2021-4-30

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索