Suppr超能文献

NL01将糠醛高效生物转化为糠醇。

Efficient bioconversion of furfural to furfuryl alcohol by NL01.

作者信息

Yan Yuxiu, Bu Chongyang, He Qin, Zheng Zhaojuan, Ouyang Jia

机构信息

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University 159 Longpan Road Nanjing 210037 China.

College of Forestry, Nanjing Forestry University Nanjing 210037 China.

出版信息

RSC Adv. 2018 Jul 26;8(47):26720-26727. doi: 10.1039/c8ra05098h. eCollection 2018 Jul 24.

Abstract

Bio-catalysis is an attractive alternative to replace chemical methods due to its high selectivity and mild reaction conditions. Furfural is an important bio-based platform compound generated from biomass. Herein, the bio-catalytic reduction of furfural (FAL) to furfuryl alcohol (FOL) was performed by using a furfural tolerant strain, NL01. An efficient co-substrate was explored and a high conversion and selectivity of FAL to FOL was reported over this bio-catalytic system using glucose as co-substrate. As the bioconversion occurred over 42 mM FAL, 20 g L glucose and 9 mg mL at 50 °C, a high conversion and selectivity was obtained by 3 h reaction. This transformation rate of FAL was the highest compared with other reactions. Furthermore, about 98 mM FOL was produced from FAL within 24 h by a fed-batch strategy with a conversion of 92% and selectivity of 96%. These results indicate that this bio-catalytic reduction of FAL has high potential for application to upgrading of FAL and NL01 is a promising biocatalyst for the synthesis of FOL. In addition, this bio-catalytic reduction shows a high potential application for catalytic upgrading of FAL from biomass.

摘要

生物催化因其高选择性和温和的反应条件,是替代化学方法的一种有吸引力的选择。糠醛是一种由生物质产生的重要生物基平台化合物。在此,使用耐糠醛菌株NL01对糠醛(FAL)进行生物催化还原生成糠醇(FOL)。探索了一种有效的共底物,并且报道了在以葡萄糖作为共底物的该生物催化体系中,FAL到FOL具有高转化率和选择性。由于生物转化在50℃下于42 mM FAL、20 g/L葡萄糖和9 mg/mL条件下进行,通过3小时反应获得了高转化率和选择性。与其他反应相比,该FAL的转化率最高。此外,通过补料分批策略在24小时内由FAL产生了约98 mM FOL,转化率为92%,选择性为96%。这些结果表明,这种FAL的生物催化还原在FAL升级方面具有很高的应用潜力,并且NL01是一种用于合成FOL的有前景的生物催化剂。此外,这种生物催化还原在生物质来源的FAL催化升级方面显示出很高的潜在应用价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f01e/9083097/1cc9dccc706a/c8ra05098h-s1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验