Kimel A V, Kirilyuk A, Usachev P A, Pisarev R V, Balbashov A M, Rasing Th
IMM, Radboud University Nijmegen, 6525 ED Nijmegen, The Netherlands.
Nature. 2005 Jun 2;435(7042):655-7. doi: 10.1038/nature03564. Epub 2005 May 25.
The demand for ever-increasing density of information storage and speed of manipulation has triggered an intense search for ways to control the magnetization of a medium by means other than magnetic fields. Recent experiments on laser-induced demagnetization and spin reorientation use ultrafast lasers as a means to manipulate magnetization, accessing timescales of a picosecond or less. However, in all these cases the observed magnetic excitation is the result of optical absorption followed by a rapid temperature increase. This thermal origin of spin excitation considerably limits potential applications because the repetition frequency is limited by the cooling time. Here we demonstrate that circularly polarized femtosecond laser pulses can be used to non-thermally excite and coherently control the spin dynamics in magnets by way of the inverse Faraday effect. Such a photomagnetic interaction is instantaneous and is limited in time by the pulse width (approximately 200 fs in our experiment). Our finding thus reveals an alternative mechanism of ultrafast coherent spin control, and offers prospects for applications of ultrafast lasers in magnetic devices.
对信息存储密度不断提高以及操作速度不断加快的需求,引发了人们对通过磁场以外的其他手段控制介质磁化的方法进行深入探索。最近关于激光诱导退磁和自旋重定向的实验使用超快激光作为操纵磁化的手段,可实现皮秒或更短时间尺度的操作。然而,在所有这些情况下,观察到的磁激发都是光吸收后温度迅速升高的结果。这种自旋激发的热起源极大地限制了潜在应用,因为重复频率受冷却时间的限制。在此,我们证明圆偏振飞秒激光脉冲可通过逆法拉第效应非热激发并相干控制磁体中的自旋动力学。这种光磁相互作用是瞬时的,并且在时间上受脉冲宽度限制(在我们的实验中约为200飞秒)。我们的发现因此揭示了一种超快相干自旋控制的替代机制,并为超快激光在磁性器件中的应用提供了前景。